【題目】閱讀下列材料,并完成任務(wù). 三角形的外心定義:三角形三邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)叫做三角形的外心,如圖1,直線分別是邊的垂直平分線.

求證:直線相交于一點(diǎn).

證明:如圖2,設(shè)相交于點(diǎn),分別連接

的垂直平分線,

,(依據(jù)1

的垂直平分線,

,

,(依據(jù)2

的垂直平分線,

∴點(diǎn)上,(依據(jù)3

∴直線相交于一點(diǎn).

1)上述證明過程中的依據(jù)1”“依據(jù)2”“依據(jù)3”分別指什么?

2)如圖3,直線分別是的垂直平分線,直線相交于點(diǎn),點(diǎn) 的外心,于點(diǎn)于點(diǎn),分別連接、、. ,的周長(zhǎng)為,求的周長(zhǎng).

【答案】1)依據(jù)1:線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等;依據(jù)2:等量代換;依據(jù)3:與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上;(2

【解析】

1)根據(jù)推理過程和垂直平分線的性質(zhì)和判定得出答案

2)根據(jù)垂直平分線的性質(zhì)得出的周長(zhǎng)=BC,再根據(jù)的周長(zhǎng)即可得出答案

1)依據(jù)1:線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等

依據(jù)2:等量代換

依據(jù)3:與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

2)解:直線的的垂直平分線

直線的的垂直平分線

,的周長(zhǎng),

的周長(zhǎng)為

,

的周長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面角坐標(biāo)系中,拋物線C1:y=ax2+bx﹣1經(jīng)過點(diǎn)A(﹣2,1)和點(diǎn)B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動(dòng)直線x=t與拋物線C1交于點(diǎn)N,與拋物線C2交于點(diǎn)M.

(1)求拋物線C1的表達(dá)式;

(2)直接用含t的代數(shù)式表示線段MN的長(zhǎng);

(3)當(dāng)AMN是以MN為直角邊的等腰直角三角形時(shí),求t的值;

(4)在(3)的條件下,設(shè)拋物線C1y軸交于點(diǎn)P,點(diǎn)My軸右側(cè)的拋物線C2上,連接AMy軸于點(diǎn)k,連接KN,在平面內(nèi)有一點(diǎn)Q,連接KQQN,當(dāng)KQ=1且∠KNQ=BNP時(shí),請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,圖形ABCD是由兩個(gè)二次函數(shù)y1=kx2+mk<0)與y2=ax2+ba>0)的部分圖象圍成的封閉圖形.已知A(1,0)、B(0,1)、D(0,﹣3).

(1)直接寫出這兩個(gè)二次函數(shù)的表達(dá)式;

(2)判斷圖形ABCD是否存在內(nèi)接正方形(正方形的四個(gè)頂點(diǎn)在圖形ABCD上),并說明理由;

(3)如圖2,連接BC,CDAD,在坐標(biāo)平面內(nèi),求使得BDCADE相似(其中點(diǎn)C與點(diǎn)E是對(duì)應(yīng)頂點(diǎn))的點(diǎn)E的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)PAD的中點(diǎn),連接AE,BD,PM,PN,MN.

(1)觀察猜想:

1中,PMPN的數(shù)量關(guān)系是   ,位置關(guān)系是   

(2)探究證明:

將圖1中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AEMP、BD分別交于點(diǎn)G、H,判斷△PMN的形狀,并說明理由;

(3)拓展延伸:

△CDE繞點(diǎn)C任意旋轉(zhuǎn),若AC=4,CD=2,請(qǐng)直接寫出△PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,其中BA是線段,且BAx軸,AC是射線.

(1)當(dāng)x30,求y與x之間的函數(shù)關(guān)系式;

(2)若小李4月份上網(wǎng)20小時(shí),他應(yīng)付多少元的上網(wǎng)費(fèi)用?

(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在該月份的上網(wǎng)時(shí)間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分8分)某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.

1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?

2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤(rùn)率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,分別是雙曲線在第一、三象限上的點(diǎn),軸,軸,垂足分別為,,點(diǎn)軸的交點(diǎn).設(shè)的面積為,的面積為,的面積為,則有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=32°,將△ABC沿直線m翻折,點(diǎn)B落在點(diǎn)D的位置,則∠1-2的度數(shù)是(

A. 32° B. 64° C. 65° D. 70°

查看答案和解析>>

同步練習(xí)冊(cè)答案