【題目】從﹣2,﹣ ,0,4中任取一個(gè)數(shù)記為m,再從余下的三個(gè)數(shù)中,任取一個(gè)數(shù)記為n,若k=mn.
(1)請用列表或畫樹狀圖的方法表示取出數(shù)字的所有結(jié)果;
(2)求正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限的概率.

【答案】
(1)解:畫樹狀圖為:

共有12種等可能的結(jié)果數(shù)


(2)解:兩數(shù)之積為正數(shù)的結(jié)果數(shù)為2,即k>0有兩種可能,

所以正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限的概率= =


【解析】(1)畫樹狀圖展示所有12種等可能的結(jié)果數(shù);(2)利用正比例函數(shù)的性質(zhì)得到k>0時(shí),正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限,然后找出兩數(shù)之積為正數(shù)的結(jié)果數(shù),再利用概率公式計(jì)算即可.
【考點(diǎn)精析】關(guān)于本題考查的列表法與樹狀圖法,需要了解當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測每袋的質(zhì)量是否符合標(biāo)準(zhǔn),超過或不足的部分分別用正、負(fù)數(shù)來表示,記錄如下表:

與標(biāo)準(zhǔn)質(zhì)量的差值
(單位:g

5

2

0

1

3

6

袋 數(shù)

1

4

3

4

5

3

1)這批樣品的平均質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?多或少幾克?

2)若每袋標(biāo)準(zhǔn)質(zhì)量為450克,則抽樣檢測的總質(zhì)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的液體,并用流量、速度、密度三個(gè)概念描述車流的基本特征。其中流量q(輛/小時(shí))指單位時(shí)間內(nèi)通過道路指定斷面的車輛數(shù);速度v(千米/小時(shí))指通過道路指定斷面的車輛速度;密度(輛/千米)指通過道路指定斷面單位長度內(nèi)的車輛數(shù),為配合大數(shù)據(jù)治堵行動,測得某路段流量q與速度v之間的部分?jǐn)?shù)據(jù)如下表:

速度v(千米/小時(shí))

5

10

20

32

40

48

流量q(輛/小時(shí))

550

1000

1600

1792

1600

1152


(1)根據(jù)上表信息,下列三個(gè)函數(shù)關(guān)系式中,刻畫q,v關(guān)系最準(zhǔn)確的是(只需填上正確答案的序號)①
(2)請利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車流速為多少時(shí),流量達(dá)到最大?最大流量是多少?
(3)已知q,v,k滿足 ,請結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問題:
①市交通運(yùn)行監(jiān)控平臺顯示,當(dāng) 時(shí)道路出現(xiàn)輕度擁堵,試分析當(dāng)車流密度k在什么范圍時(shí),該路段出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設(shè)前后兩車車頭之間的距離d(米)均相等,求流量q最大時(shí)d的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)某校八年級學(xué)生全部參加初二生物地理會考,從中抽取了部分學(xué)生的生物考試成績,將他們的成績進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四個(gè)等級,并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:

(1)抽取了__名學(xué)生成績;

(2)請把頻數(shù)分布直方圖補(bǔ)充完整;

(3)扇形統(tǒng)計(jì)圖中A等級所在的扇形的圓心角度數(shù)是__

(4)若A、B、C三個(gè)等級為合格,該校初二年級有900名學(xué)生,估計(jì)全年級生物合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD上一點(diǎn),PQ垂直平分BE,分別交ADBE、BC于點(diǎn)P、OQ,連接BPEQ

(1)求證:四邊形BPEQ是菱形;

(2)若AB=6,FAB的中點(diǎn),OF =4,求菱形BPEQ的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD
(1)求證:BD平分∠ABC;
(2)當(dāng)∠ODB=30°時(shí),求證:BC=OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x是正實(shí)數(shù),我們用{x}表示不小于x的最小正整數(shù),如{0.7}=1,{2}=2,{3.1}=4,在此規(guī)定下任一正實(shí)數(shù)都能寫成如下形式:x={x}-m,其中O≤m<l.

(1)直接寫出{x}x,x+1的大小關(guān)系:

(2)根據(jù)(1)中的關(guān)系式,求滿足{2x-1}=3x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,P是線段AB上的一點(diǎn),在AB的同側(cè)作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,連接CD,點(diǎn)E、F、G、H分別是AC、AB、BD、CD的中點(diǎn),順次連接E、F、G、H.

(1)猜想四邊形EFGH的形狀,直接回答,不必說明理由;

(2)當(dāng)點(diǎn)P在線段AB的上方時(shí),如圖2,在△APB的外部作△APC和△BPD,其他條件不變,(1)中的結(jié)論還成立嗎?說明理由;

(3)如果(2)中,∠APC=∠BPD=90°,其他條件不變,先補(bǔ)全圖3,再判斷四邊形EFGH的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題:

(1)—2+(—3)—(+5)+(+7);

(2)(—4)×7×(—1);

(3);

(4).

(5);

(6)

查看答案和解析>>

同步練習(xí)冊答案