【題目】如圖,在平面直角坐標系中, 為坐標原點,直線 : 與直線 : 交于點 , 與 軸交于 ,與 軸交于點 .
(1)求 的面積;
(2)若點 在直線 上,且使得 的面積是 面積的 ,求點 的坐標.
【答案】
(1)解:由 得:
∴A(4,2)
在y=-x+6中,當x=0,y=6,則C(0,6),S△OAC= ×6×4=12
(2)解:解:分兩種情況:①如圖所示,
當點M1在射線AC上時,過M1作M1D⊥CO于D,則△CDM1是等腰直角三角形,
∵A(4,2),C(0,6),
∴AC= =4,
∵△OAM的面積是△OAC面積的 ,
∴AM1= AC=3 ,
∴CM1= ,
∴DM1= ,即點M1的橫坐標為 ,
在直線y=﹣x+6中,當x= 時,y=6﹣ ,
∴M1( ,6﹣ );
②如圖所示,當點M2在射線AB上時,過M2作M2E⊥CO于E,則△CEM2是等腰直角三角形,
由題可得,AM2=AM1=3 ,
∴CM2=7 ,
∴EM2= ,即點M2的橫坐標為,
在直線y=﹣x+6中,當x= 時,y=6﹣ ,
∴M2( ,6﹣ ).
綜上所述,點M的坐標為(,6﹣ )或( ,6﹣ ).
【解析】(1)先求出兩直線的交點A的坐標,及直線BC與y軸的交點C的坐標,再根據(jù)三角形的面積公式,即可求出△OAC的面積。
(2)抓住已知條件中的關鍵詞點M在直線l2上,因此分兩種情況討論:當點M1在射線AC上時,過M1作M1D⊥CO于D,則△CDM1是等腰直角三角形,易求出AC的長,再根據(jù)△OAM和△OAC的面積關系求出AM1,CM1的長,由△CDM1是等腰直角三角形,可得出DM1的長,然后結(jié)合函數(shù)解析式就可求出 點M1的坐標;當點M2在射線AB上時,過M2作M2E⊥CO于E,則△CEM2是等腰直角三角形,運用類似的方法求出點M2的坐標,即可得出結(jié)論。
科目:初中數(shù)學 來源: 題型:
【題目】小明想做一個直角三角形的木架,以下四組木棒中,哪一組的三條能夠剛好做成(
A. 9厘米,12厘米,15厘米 B. 7厘米,12厘米,13厘米
C. 12 厘米,15厘米,17厘米 D. 3 厘米,4厘米,7厘米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+1經(jīng)過A(-1,0),B(1,1)兩點.
(1)求該拋物線的解析式;
(2)閱讀理解:
在同一平面直角坐標系中,直線l1:y=k1x+b1(k1,b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2,b2為常數(shù),且k2≠0),若l1⊥l2,則k1·k2=-1.
解決問題:
①若直線y=3x-1與直線y=mx+2互相垂直,求m的值;
②是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國魏晉時期的數(shù)學家劉徽創(chuàng)立了“割圓術”,認為圓內(nèi)接正多邊形邊數(shù)無限增加時,周長就越接近圓周長,由此求得了圓周率的近似值.設半徑為的圓內(nèi)接正邊形的周長為,圓的直徑為.如右圖所示,當時,,那么當時, .(結(jié)果精確到,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,銳角三角形ABC中,直線L為BC的中垂線,直線M為∠ABC的角平分線,L與M相交于P點.若∠A=60°,∠ACP=24°,則∠ABP的度數(shù)為何?( 。
A.24°
B.30°
C.32°
D.36°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線c1的頂點為A(﹣1,4),與y軸的交點為D(0,3).
(1)求c1的解析式;
(2)若直線l1:y=x+m與c1僅有唯一的交點,求m的值;
(3)若拋物線c1關于y軸對稱的拋物線記作c2,平行于x軸的直線記作l2:y=n.試結(jié)合圖形回答:當n為何值時,l2與c1和c2共有:①兩個交點;②三個交點;③四個交點;
(4)若c2與x軸正半軸交點記作B,試在x軸上求點P,使△PAB為等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com