【題目】如圖,ABC的面積為8cm2,AP垂直∠B的平分線BPP,則PBC的面積為( 。

A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2

【答案】C

【解析】分析:過P點(diǎn)作PE⊥BP,垂足為P,交BC于E,根據(jù)AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可求出三角形PBC的面積.

詳解:延長AP交BC于E,

AP垂直B的平分線BP于P,

∴∠ABP=∠EBP,∠APB=∠BPE=90°,

APB和EPB中

,

∴△APB≌△EPB(ASA),

∴S△APB=S△EPB,AP=PE,

∴△APC和△CPE等底同高,

∴S△APC=S△PCE

∴S△PBC=S△PBE+S△PCE=S△ABC=4cm2,

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,過點(diǎn)B作直線l,點(diǎn)E在直線l上,連接CE,DE,CE=BC,過點(diǎn)C作CFDE于點(diǎn)F,交直線l于點(diǎn)H,當(dāng)l在如圖的位置時(shí),易證:BH+EH=CH(不需證明).

(1)當(dāng)l在如圖的位置時(shí),線段BH,EH,CH之間有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給予證明;

(2)當(dāng)l在如圖的位置時(shí),線段BH,EH,CH之間有怎樣的數(shù)量關(guān)系?寫出你的猜想,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DAB的中點(diǎn),ECD的中點(diǎn), 過點(diǎn)CCF//ABAE的延長線于點(diǎn)F,連接BF

(1) 求證:DBCF

(2) 如果ACBC,試判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)位于格點(diǎn)上,點(diǎn)Mmn)是ABC內(nèi)部的任意一點(diǎn),請按要求完成下面的問題

1)將ABC向右平移8個(gè)單位長度,得到A1B1C1,請直接畫出A1B1C1;

2)將ABC以原點(diǎn)為中心旋轉(zhuǎn)180°,得到A2B2C2,請直接畫出A2B2C2,并寫出點(diǎn)M的對應(yīng)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C2B,點(diǎn)DBC上一點(diǎn),且ADAB,點(diǎn)EBD的中點(diǎn),連接AE,且AEDE

1)求證:∠AEC=∠C;

2)若AE8.5,AD8,求ABE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大熊山某農(nóng)家樂為了抓住五一小長假的商機(jī),決定購進(jìn)A、B兩種紀(jì)念品。若購進(jìn)A種紀(jì)念品4件,B種紀(jì)念品3件,需要550元;若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品5件,需要1050元。

1)求購進(jìn)AB兩種紀(jì)念品每件各需多少元。

2)若該農(nóng)家樂決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該農(nóng)家樂共有幾種進(jìn)貨方案。

3)若銷售每件A種紀(jì)念品可獲利潤30元,每件B種紀(jì)念品可獲利潤20元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,B=60°,∠C=30°,ADAE分別是△ABC的高和角平分線,求DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,點(diǎn)在對角線上,以的長為半徑的圓分別交于點(diǎn),且

(1)求證:是圓所在圓的切線;

(2)若,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“網(wǎng)絡(luò)紅包”是互聯(lián)網(wǎng)運(yùn)營商、商家通過組織互聯(lián)網(wǎng)線上活動(dòng)、派發(fā)紅包的互聯(lián)網(wǎng)工具,是朋友間互道祝福的表達(dá)形式之一.“網(wǎng)絡(luò)紅包”春節(jié)活動(dòng)已經(jīng)逐漸深入到大眾的生活中,得到了人們較為廣泛的關(guān)注.根據(jù)某咨詢公司(2018年中國春節(jié)“網(wǎng)絡(luò)紅包”專題調(diào)查報(bào)告》顯示:在接受調(diào)查的8萬名網(wǎng)民中,對“網(wǎng)絡(luò)紅包”春節(jié)話動(dòng)了解程度的占比方面,“較為了解”和“很了解”的網(wǎng)民共占比64%,分別占比36%和28%.在“不了解”和“只了解一兩個(gè)“的受訪網(wǎng)民中,“不了解”的網(wǎng)民人數(shù)比“只了解一兩個(gè)”的網(wǎng)民人數(shù)多25%.如圖是該咨詢公司繪制的“中國網(wǎng)民關(guān)于‘網(wǎng)絡(luò)紅包’春節(jié)活動(dòng)了解情況調(diào)查”統(tǒng)計(jì)圖(不完整).

請根據(jù)以上信息解答下列問題:

(1)在受訪的網(wǎng)民中,“不了解”和“只了解一兩個(gè)”的網(wǎng)民人數(shù)共有   萬人,其中“不了解”的網(wǎng)民人數(shù)是   萬人;

(2)請將扇形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)2017除夕晚上小聰和爸爸、媽媽一起玩微信搶紅包游戲,他們約定由爸爸在家人微信群中先后發(fā)兩次“拼手氣紅包”,每次發(fā)放的紅包數(shù)是3個(gè),每個(gè)紅包抽到的金額隨機(jī)(每兩個(gè)紅包的金額都不相等),每次誰抽到紅包的金額最大誰就是“手氣最佳”者,求兩次游戲中小聰都能獲得“手氣最佳”的概率為多少?

查看答案和解析>>

同步練習(xí)冊答案