【題目】如圖,在三角形紙片ABC中,AD平分∠BAC,將△ABC折疊,使點A與點D重合,展開后折痕分別交AB、AC于點E、F,連接DE、DF.求證:四邊形AEDF是菱形.

【答案】證明:∵AD平分∠BAC ∴∠BAD=∠CAD
又∵EF⊥AD,
∴∠AOE=∠AOF=90°
∵在△AEO和△AFO中

∴△AEO≌△AFO(ASA),
∴EO=FO
又∵A點與D點重合,
∴AO=DO,
∴EF、AD相互平分,
∴四邊形AEDF是平行四邊形
∵點A與點D關于直線EF對稱,
∵EF⊥AD,
∴平行四邊形AEDF為菱形.

【解析】由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°證△AEO≌△AFO,推出EO=FO,得出平行四邊形AEDF,根據EF⊥AD得出菱形AEDF.
【考點精析】根據題目的已知條件,利用菱形的判定方法和翻折變換(折疊問題)的相關知識可以得到問題的答案,需要掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:點B、E、F、C在同一直線上,∠A=∠D,BE=CF,且AB∥CD.求證:AF∥ED

證明:∵BE=FC

∴BE+EF=FC+EF____________________________

即:___________

∵AB∥CD

∴∠B=∠C_________________________

在△ABF和△DCE中,

∠A=∠D, ∠B=∠C, BF=CE

∴△ABF≌△DCE________

∴∠AFB=∠DEC_________________________________

∴AF∥ED__________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在精準扶貧中,某村的李師傅在縣政府的扶持下,去年下半年,他對家里的3個溫室大棚進行修整改造,然后,1個大棚種植香瓜,另外2個大棚種植甜瓜,今年上半年喜獲豐收,現(xiàn)在他家的甜瓜和香瓜已全部售完,他高興地說:我的日子終于好了”. 最近,李師傅在扶貧工作者的指導下,計劃在農業(yè)合作社承包5個大棚,以后就用8個大棚繼續(xù)種植香瓜和甜瓜,他根據種植經驗及今年上半年的市場情況,打算下半年種植時,兩個品種同時種,一個大棚只種一個品種的瓜,并預測明年兩種瓜的產量、銷售價格及成本如下:

品種

產量(/每棚)

銷售量(/每斤)

成本(/每棚)

香瓜

2000

12

8000

甜瓜

4500

3

5000

現(xiàn)假設李師傅今年下半年香瓜種植的大棚數(shù)為x個,明年上半年8個大棚中所產的瓜全部售完后,獲得的利潤為y.

根據以上提供的信息,請你解答下列問題:

(1)求出yx之間的函數(shù)關系式;

(2)求出李師傅種植的8個大棚中,香瓜至少種植幾個大棚? 才能使獲得的利潤不低于10萬元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在一個不透明的袋中裝有四個球,分別標有字母A、B、C、D,這些球除了所標字母外都相同,另外,有一面白色、另一面黑色、大小相同的4張正方形卡片,每張卡片上面的字母相同,分別標有A、B、C、D.最初,擺成圖2的樣子,A、D是黑色,B、C是白色. 操作:①從袋中任意取一個球;
②將與取出球所標字母相同的卡片翻過來;
③將取出的球放回袋中
再次操作后,觀察卡片的顏色.

(如:第一次取出球A,第二次取出球B,此時卡片的顏色變
(1)求四張卡片變成相同顏色的概率;
(2)求四張卡片變成兩黑兩白,并恰好形成各自顏色矩形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c,其圖象拋物線交x軸于點A(1,0),B(3,0),交y軸于點C,直線l過點C,且交拋物線于另一點E(點E不與點A、B重合).
(1)求此二次函數(shù)關系式;
(2)若直線l1經過拋物線頂點D,交x軸于點F,且l1∥l,則以點C、D、E、F為頂點的四邊形能否為平行四邊形?若能,求出點E的坐標;若不能,請說明理由.
(3)若過點A作AG⊥x軸,交直線l于點G,連接OG、BE,試證明OG∥BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)所示為一上面無蓋的正方體紙盒,現(xiàn)將其剪開展成平面圖,如圖(2)所示.已知展開圖中每個正方形的邊長為1.

(1)求在該展開圖中可畫出最長線段的長度?這樣的線段可畫幾條?

(2)試比較立體圖中與平面展開圖中的大小關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:|﹣1|= , 22= , (﹣3)2= =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點M( ),以點M為圓心,OM長為半徑作⊙M.使⊙M與直線OM的另一交點為點B,與x軸,y軸的另一交點分別為點D,A(如圖),連接AM.點P是 上的動點.
(1)寫出∠AMB的度數(shù);
(2)點Q在射線OP上,且OPOQ=20,過點Q作QC垂直于直線OM,垂足為C,直線QC交x軸于點E. ①當動點P與點B重合時,求點E的坐標;
②連接QD,設點Q的縱坐標為t,△QOD的面積為S.求S與t的函數(shù)關系式及S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣ +bx+c的圖象經過A(2,0)、B(0,﹣6)兩點.

(1)求這個二次函數(shù)的解析式;
(2)設該二次函數(shù)的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積.

查看答案和解析>>

同步練習冊答案