【題目】如圖,AB為⊙O的直徑,C、D為⊙O上異于A、B的兩點,連接CD,過點C作CE⊥DB,交DB的延長線于點E.
(1)連接AC、AD,求證:∠DAC+∠ACE=180°.
(2)若∠ABD=2∠BDC,求證:CE是⊙O的切線.
【答案】(1)見解析(2)見解析
【解析】
(1)根據(jù)圓周角定理證得∠ADB=90°,即AD⊥BD,由CE⊥DB證得AD∥CE,根據(jù)平行線的性質即可證得結論;
(2)連接OC.先根據(jù)等邊對等角及三角形外角的性質得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,則OC∥DB,再由CE⊥DB,得到OC⊥CE,根據(jù)切線的判定即可證明CE為⊙O的切線.
(1)證明:∵AB為⊙O的直徑,
∴∠ADB=90°,
∴AD⊥DB,
∵CE⊥DB,
∴AD∥CE,
∴∠DAC+∠ACE=180°;
(2)連接OC.如圖:
∵OA=OC,
∴∠1=∠2.
又∵∠3=∠1+∠2,
∴∠3=2∠1.
又∵∠4=2∠BDC,∠BDC=∠1,
∴∠4=2∠1,
∴∠4=∠3,
∴OC∥DB.
∵CE⊥DB,
∴OC⊥CE.
又∵OC為⊙O的半徑,
∴CE為⊙O的切線;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB、BD于M、N兩點,若AM=2,則線段ON的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交CD于點F,交AD的延長線于點E,若AB=4,BM=2,則△DEF的面積為( 。
A.9B.8C.15D.14.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F,若BE=3,AF=5,則AC的長為( )
A. B. C. 10D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E是BC的中點,連接DE,過點A作AG⊥ED交DE于點F,交CD于點G.
(1)若BC=4,求AG的長;
(2)連接BF,求證:AB=FB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》中記載:“今有上禾三秉,益實六斗,當下禾十秉.下禾五秉,益實一斗,當上禾二秉.問上、下禾實一秉各幾何?”其大意是:今有上等稻子三捆,若打出來的谷子再加六斗,則相當于十捆下等稻子打出來的谷子.有下等稻子五捆,若打出來的谷子再加一斗,則相當于兩捆上等稻子打岀來的谷子.問上等、下等稻子每捆能打多少斗谷子?設上等稻子每捆能打x斗谷子,下等稻子每捆能打y斗谷子,根據(jù)題意,可列方程組為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象有一個交點的縱坐標是2.
(Ⅰ)當x=4時,求反比例函數(shù)y=的值;
(Ⅱ)當﹣2<x<﹣1時,求反比例函數(shù)y=的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在某一路段,規(guī)定汽車限速行駛,交通警察在此限速路段的道路上設置了監(jiān)測區(qū),其中點C、D為監(jiān)測點,已知點C、D、B在同一直線上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°
(1)求道路AB段的長(結果精確到1米)
(2)如果道路AB的限速為60千米/時,一輛汽車通過AB段的時間為90秒,請你判斷該車是否是超速,并說明理由;參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com