【題目】如圖,已知AO=OB,OC=OD,ADBC相交于點E,則圖中全等三角形有( )對.

A.1B.2C.3D.4

【答案】D

【解析】

由條件可證AOD≌△BOC,可得AB,則可證明ACE≌△BDE,可得AEBE,則可證明AOE≌△BOE,可得COEDOE,可證COE≌△DOE,可求得答案.

解:在AODBOC

∴△AOD≌△BOCSAS),

∴∠AB

OCOD,OAOB,

ACBD,

ACEBDE

∴△ACE≌△BDEAAS),

AEBE,

AOEBOE

∴△AOE≌△BOESAS),

∴∠COEDOE,

COEDOE

∴△COE≌△DOESAS),

故全等的三角形有4對,

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一輛貨車從百貨大樓出發(fā)負責送貨,向東走了2千米到達小明家,繼續(xù)向東走了4千米到達小紅家,然后向西走了9千米到達小剛家,最后返回百貨大樓.

1)以百貨大樓為原點,向東為正方向,1個單位長度表示1千米,請你在數(shù)軸上標出小明、小紅、小剛家的位置;

2)小明家與小剛家相距多遠?

3)若貨車每千米耗油0.5升,那么這輛貨車共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解“課程選修”的情況,對報名參加“藝術鑒賞”、“科技制作”、“數(shù)學思維”、“閱讀寫作”這四個選修項目的學生(每人限報一項)進行抽樣調查.下面是根據(jù)收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,解答下面的問題:

(1)此次共調查了 名學生,型統(tǒng)計圖中“藝術鑒賞”部分的圓心角是 度.

(2)請把這個條形統(tǒng)計圖補充完整.

(3)現(xiàn)該校共有800名學生報名參加這四個選修項目,請你估計其中有多少名學生選修“科技制作”項目.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分8分)

如圖,用兩段等長的鐵絲恰好可以分別圍成一個正五邊形和一個正六邊形,其中正五邊形的邊長為(),正六邊形的邊長為()cm(其中),求這兩段鐵絲的總長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,已知點D,EF分別為BC,AD,AE的中點,且SABC=4cm2,則陰影部分面積S=( 。cm2

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形 ABCD 中,ADBC,DCBC,將四邊形沿對角線 BD 折疊,點 A 恰好落在 DC 邊上的 A'處,若∠A'BC=20°,則∠A'BD 的度數(shù)為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC 中,AB=AC,點 D BC 上,DEAB,DFAC,垂足分別為點 E、F, DE=DF.

求證:點 D BC 的中點.(請用兩種不同的方法證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BC,ADBC,垂足為D,AE平分BAC.已知B=65°DAE=20°,求C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(6,0),B(8,5),將線段OA平移至CB,點D在x軸正半軸上(不與點A重合),連接OC,AB,CD,BD.

(1)求對角線AC的長;

(2)設點D的坐標為(x,0),ODC與ABD的面積分別記為S1,S2.設S=S1﹣S2,寫出S關于x的函數(shù)解析式,并探究是否存在點D使S與DBC的面積相等?如果存在,用坐標形式寫出點D的位置;如果不存在,說明理由.

查看答案和解析>>

同步練習冊答案