【題目】操作探究

如圖1,在Rt△ABC中,B90°,AB4BC2,點D、E分別是邊BC、AC的中點,連接DE.將CDE繞點C逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α

1)問題發(fā)現(xiàn)

當(dāng)α時,   當(dāng)α180°時,   

2)拓展探究

試判斷:當(dāng)0°≤α360°時,的大小有無變化?請僅就圖2的情形給出證明.

3)問題解決

CDE繞點C逆時針旋轉(zhuǎn)至AB、E三點在同一條直線上時,求線段BD的長.

【答案】1)①,②2)當(dāng)0°≤α360°時,的大小沒有變化(3BD的長為

【解析】

1)①當(dāng)α時,則點DE分別是邊BC、AC的中點,得DEBA,進(jìn)而即可得到答案;②當(dāng)α180°時,則點D、E分別是邊BCAC的延長線上,且DEBA,,即可得到答案;

2)根據(jù)兩邊對應(yīng)成比例且夾角相等的兩個三角形相似,即可得到結(jié)論;

3)分兩種情況討論:①當(dāng)點EAB的延長線上時, ②當(dāng)點E在線段AB上時, 結(jié)合,分別求出答案,即可.

1)①∵在Rt△ABC中,B90°,AB4,BC2,

當(dāng)α時,則點D、E分別是邊BCAC的中點,

DEBA,

,即:,

故答案是:

②當(dāng)α180°時,則點D、E分別是邊BC、AC的延長線上,且DEBA,

=,

故答案是:

2)如圖2,當(dāng)0°≤α360°時,的大小沒有變化,理由如下:

∵∠ECD=∠ACB

∴∠ECA=∠DCB,

∵點D、E分別是邊BC、AC的中點,即:CD=1CE=,

==,

ECADCB,

==;

3)①當(dāng)點EAB的延長線上時,如圖3,

Rt△BCE中,CE,BC2,

BE1

AEAB+BE5,

,

BD

②當(dāng)點E在線段AB上時,如圖4,

BC=2,CE=,∠ABC=90°,

BE1,AE413,

BD

綜上所述,滿足條件的BD的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與一次函數(shù)的圖象交于點及點

1)求二次函數(shù)的解析式及的坐標(biāo)

2)根據(jù)圖象,直按寫出滿足的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種書包,平均每天可銷售100件,每件盈利30.試營銷階段發(fā)現(xiàn):該商品每件降價1元,超市平均每天可多售出10.設(shè)每件商品降價元時,日盈利為.據(jù)此規(guī)律,解決下列問題:

1)降價后每件商品盈利 元,超市日銷售量增加 件(用含的代數(shù)式表示);

2)在上述條件不變的情況下,求每件商品降價多少元時,超市的日盈利最大?最大為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知直線ya與拋物線交于AB兩點(AB的左側(cè)),交y軸于點C

(1)若AB4,求a的值

(2)若拋物線上存在點D(不與A、B重合),使,求a的取值范圍

(3)如圖2,直線ykx2與拋物線交于點EF,點P是拋物線上的動點,延長PE、PF分別交直線y=-2M、N兩點,MNy軸于Q點,求QM·QN的值。

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形AD的邊長為2,對角線ACBD相交于點O,BD=2,分別以AB、BC為直徑作半圓,則圖中陰影部分的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上研究數(shù)學(xué)問題,他們在沙灘上畫點或用小石子來表示數(shù),比如,他們研究過1,3,6,10……,由于這些數(shù)可以用圖中所示的三角形點陣標(biāo)表示,他們就將其稱為三角形數(shù),第n個三角形數(shù)可以用表示.

請根據(jù)以上材料,證明以下結(jié)論:

(1)任意一個三角形數(shù)乘8再加1是一個完全平方數(shù);

(2)連續(xù)兩個三角形數(shù)的和是一個完全平方數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新華商場銷售某種冰箱,每臺進(jìn)價為2500元,銷售價為2900元,平均每天能售出8臺;調(diào)查發(fā)現(xiàn),當(dāng)銷售價每降低50元,平均每天就能多售出4臺.商場要想使這種冰箱的銷售利潤平均每天達(dá)到5000元,每臺冰箱應(yīng)該降價多少元?若設(shè)每臺冰箱降價x元,根據(jù)題意可列方程( 。

A. (2900-x)(8+4×)=5000 B. (400-x)(8+4×)=5000

C. 4(2900-x)(8+)=5000 D. 4(400-x)(8+)=5000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣(2k+1)x+k2+1=0.

(1)若方程有兩個不相等的實數(shù)根,求k的取值范圍;

(2)若方程的兩根恰好是一個矩形兩鄰邊的長,且k=2,求該矩形的對角線L的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某博物館每周都吸引大量中外游客前來參觀,如果游客過多,對館中的珍貴文物會產(chǎn)生不利影響,但同時考慮到文物的修繕和保存費用問題,還要保證一定的門票收入,因此,博物館采取了漲浮門票價格的方法來控制參觀人數(shù),在該方法實施過程中發(fā)現(xiàn):每周參觀人數(shù)與票價之間存在著如圖所示的一次函數(shù)關(guān)系.在這種情況下,如果要保證每周萬元的門票收入,那么每周應(yīng)限定參觀人數(shù)是多少?門票價格應(yīng)是多少.

查看答案和解析>>

同步練習(xí)冊答案