【題目】如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于點C,過點C的直線y=2x+b交x軸于點D,且⊙P的半徑為,AB=4.
(1)求點B,P,C的坐標;(2)求證:CD是⊙P的切線.
【答案】(1)B(2,0),P(0,1),C(-2,2);(2)詳見解析.
【解析】試題分析:
(1)Rt△OBP中,由勾股定理得到OP的長,連接AC,因為BC是直徑,所以∠BAC=90°,因為OP是△ABC的中位線,所以OA=2,AC=2,即可求解;
(2)由點C的坐標可得直線CD的解析式,則可求點D的坐標,從而可用SAS證△DAC≌△POB,進而證∠ACB=90°.
試題解析:
(1)解:如圖,連接CA.∵OP⊥AB,∴OB=OA=2.∵OP2+BO2=BP2,
∴OP2=5-4=1,OP=1.∵BC是⊙P的直徑,∴∠CAB=90°.
∵CP=BP,OB=OA,∴AC=2OP=2.∴B(2,0),P(0,1),C(-2,2).
(2)證明:∵直線y=2x+b過C點,∴b=6.∴y=2x+6.
∵當y=0時,x=-3,∴D(-3,0).∴AD=1.∵OB=AC=2,AD=OP=1,
∠CAD=∠POB=90°,∴△DAC≌△POB.∴∠DCA=∠ABC.
∵∠ACB+∠CBA=90°,∴∠DCA+∠ACB=90°,即CD⊥BC.∴CD是⊙P的切線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標分別為(﹣4,5),(﹣1,3).
(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;
(2)請作出△ABC關(guān)于y軸對稱的△A1B1C1;
(3)寫出點B1的坐標;
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師家買了一套新房,其結(jié)構(gòu)如圖所示(單位:m).他打算將臥室鋪上木地板,其余部分鋪上地磚.
(1)木地板和地磚分別需要多少平方米?
(2)如果地磚的價格為每平方米x元,木地板的價格為每平方米3x元,那么王老師需要花多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線CD與EF相交于點O,∠COE=60°,將一直角三角尺AOB的直角頂點與O重合,OA平分∠COE.
(1)求∠BOD的度數(shù);
(2)將三角尺AOB以每秒3°的速度繞點O順時針旋轉(zhuǎn),同時直線EF也以每秒9°的速度繞點O順時針旋轉(zhuǎn),設(shè)運動時間為t秒(0≤t≤40).
①當t為何值時,直線EF平分∠AOB;
②若直線EF平分∠BOD,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一拱形公路橋,圓弧形橋拱的水面跨度AB=80 m,橋拱到水面的最大高度為20 m.(1)求橋拱的半徑.
(2)現(xiàn)有一艘寬60 m,頂部截面為長方形且高出水面9 m的輪船要經(jīng)過這座拱橋,這艘輪船能順利通過嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定:每購買500元商品,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止后,指針上對準500、200、100、50、10的區(qū)域,顧客就可以獲得500元、200元、100元、50元、10元的購物券一張(轉(zhuǎn)盤等分成20份)。
(1)小華購物450元,他獲得購物券的概率是多少?
(2)小麗購物600元,那么:
① 她獲得50元購物券的概率是多少?
② 她獲得100元以上(包括100元)購物券的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象交x軸于A(-6,0),交正比例函數(shù)的圖象于點B,且點B在第三象限,它的橫坐標為-2,△AOB的面積為6平方單位,求正比例函數(shù)和一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊中, 是的角平分線, 為上一點,以為一邊且在下方作等邊,連接.
()求證: ≌.
()延長至, 為上一點,連接、使,若,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com