【題目】一個(gè)多邊形,它的內(nèi)角和比外角和還多 180°,求這個(gè)多邊形的邊數(shù).

【答案】多邊形的邊數(shù)為 5

【解析】

根據(jù)多邊形的外角和均為 360°,已知該多邊形的內(nèi)角和比外角和還多 180°,可以得出 內(nèi)角和為540°,再根據(jù)計(jì)算多邊形內(nèi)角和的公式(n-2)×180°,即可得出該多邊形的邊數(shù).

設(shè)多邊形的邊數(shù)為 n,則

(n-2)×180°=360°+180°

解得 n=5

答:多邊形的邊數(shù)為5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)一次函數(shù)與反比例函數(shù)的圖象相交于A﹣1,4),B2n)兩點(diǎn),直線ABx軸于點(diǎn)D

1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;

2)過點(diǎn)BBC⊥y軸,垂足為C,連接ACx軸于點(diǎn)E,求△AED的面積S

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若等腰三角形的一邊長(zhǎng)等于6,另一邊長(zhǎng)等于4,則它的周長(zhǎng)等于(   )

A. 15 B. 16 C. 14 D. 1416

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】體育課上,老師為了解初三女學(xué)生定點(diǎn)投籃的情況,隨機(jī)抽取8名女生進(jìn)行每人4次定點(diǎn)投籃的測(cè)試,進(jìn)球數(shù)的統(tǒng)計(jì)如圖所示.

1)求女生進(jìn)球數(shù)的平均數(shù)、中位數(shù);

2)投球4次,進(jìn)球3個(gè)以上(含3個(gè))為優(yōu)秀,全校有初三女生400人,從中任選一位女生,求選到的女生投籃成績(jī)?yōu)?/span>優(yōu)秀等級(jí)的的概率?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y1=2x﹣2與坐標(biāo)軸交于A、B兩點(diǎn),與雙曲線y2= (x>0)交于點(diǎn)C,過點(diǎn)C作CDx軸,垂足為D,且OA=AD,則以下結(jié)論:

①SADB=SADC;

當(dāng)0<x<3時(shí),y1<y2;

如圖,當(dāng)x=3時(shí),EF= ;

當(dāng)x0時(shí),y1隨x的增大而增大,y2隨x的增大而減。

其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB∥CD,AC∥BD,AD與BC交于O,AE⊥BC于E,DF⊥BC于F,那么圖中全等的三角形有( )

A.5對(duì)
B.6對(duì)
C.7對(duì)
D.8對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若把代數(shù)式x2-2x+3化為(x-m)2+k的形式,其中m,k為常數(shù),結(jié)果正確的是( 。

A. (x+1)2+4 B. (x-1)2+2 C. (x-1)2+4 D. (x+1)2+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多邊形切去一個(gè)角后,形成的另一個(gè)多邊形的內(nèi)角和為1080°,那么原多邊形的邊數(shù)為(

A. 8 B. 78 C. 678 D. 789

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊在AD的右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想:如圖(1),當(dāng)點(diǎn)D在線段BC上時(shí),

①BC與CF的位置關(guān)系是:   

②BC、CD、CF之間的數(shù)量關(guān)系為:   (將結(jié)論直接寫在橫線上)

(2)數(shù)學(xué)思考:如圖(2),當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),上述①、②中的結(jié)論是否仍然成立?若成立,請(qǐng)給予證明,若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案