【題目】如圖,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑畫弧,分別交AB、AC于點(diǎn)E、F;②分別以點(diǎn)E、F為圓心,大于 EF的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)G;③作射線AG交BC邊于點(diǎn)D.則∠ADC的度數(shù)為 .
【答案】65°
【解析】解:解法一:連接EF. ∵點(diǎn)E、F是以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑畫弧,分別與AB、AC的交點(diǎn),
∴AF=AE;
∴△AEF是等腰三角形;
又∵分別以點(diǎn)E、F為圓心,大于 EF的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)G;
∴AG是線段EF的垂直平分線,
∴AG平分∠CAB,
∵∠CAB=50°,
∴∠CAD=25°;
在△ADC中,∠C=90°,∠CAD=25°,
∴∠ADC=65°(直角三角形中的兩個(gè)銳角互余);
解法二:根據(jù)已知條件中的作圖步驟知,AG是∠CAB的平分線,∵∠CAB=50°,
∴∠CAD=25°;
在△ADC中,∠C=90°,∠CAD=25°,
∴∠ADC=65°(直角三角形中的兩個(gè)銳角互余);
故答案是:65°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點(diǎn)F為BE中點(diǎn),連接DF、CF.
(1)如圖1,當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上,請(qǐng)直接寫出此時(shí)線段DF、CF的數(shù)量關(guān)系和位置關(guān)系(不用證明);
(2)如圖2,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°時(shí),請(qǐng)你判斷此時(shí)(1)中的結(jié)論是否仍然成立,并證明你的判斷;
(3)如圖3,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°時(shí),若AD=1,AC= ,求此時(shí)線段CF的長(zhǎng)(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l分別交x軸、y軸于A、B兩點(diǎn),AB=5,OA:OB =3:4.
(1)求直線l的表達(dá)式;
(2)點(diǎn)P是軸上的點(diǎn),點(diǎn)Q是第一象限內(nèi)的點(diǎn).若以A、B、P、Q為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫出Q點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),∠COE=90°,OF平分∠AOE.
(1)若∠COF=40°,求∠BOE的度數(shù).
(2)若∠COF=α(0°<α<90°),則∠BOE=______(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】古運(yùn)河是揚(yáng)州的母親河為打造古運(yùn)河風(fēng)光帶,現(xiàn)有一段長(zhǎng)為180米的河道整治任務(wù)由A、B兩工程隊(duì)先后接力完成工程隊(duì)每天整治12米,B工程隊(duì)每天整治8米,共用時(shí)20天.
根據(jù)題意,甲、乙兩名同學(xué)分別列出尚不完整的方程組如下:
甲:;乙:
根據(jù)甲、乙兩名問(wèn)學(xué)所列的方程組,請(qǐng)你分別指出未知數(shù)x、y表示的意義,然后在方框中補(bǔ)全甲、乙兩名同學(xué)所列的方程組:
甲:x表示______,y表示______;
乙:x表示______,y表示______.
求A、B兩工程隊(duì)分別整治河道多少米寫出完整的解答過(guò)程
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,AD上,且AF=CE.
(Ⅰ)如圖①,求證四邊形AECF是平行四邊形;
(Ⅱ)如圖②,若∠BAC=90°,且四邊形AECF是邊長(zhǎng)為6的菱形,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】5月31日是世界無(wú)煙日.某市衛(wèi)生機(jī)構(gòu)為了了解“導(dǎo)致吸煙人口比例高的最主要原因”,隨機(jī)抽樣調(diào)查了該市部分18﹣65歲的市民.如圖是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖,根據(jù)圖中信息解答下列問(wèn)題:
(1)這次接受隨機(jī)抽樣調(diào)查的市民總?cè)藬?shù)為;
(2)圖1中的m的值是;
(3)求圖2中認(rèn)為“煙民戒煙的毅力弱”所對(duì)應(yīng)的圓心角的度數(shù);
(4)若該市18﹣65歲的市民約有200萬(wàn)人,請(qǐng)你估算其中認(rèn)為導(dǎo)致吸煙人口比例高的最主要的原因是“對(duì)吸煙危害健康認(rèn)識(shí)不足”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)甲、乙兩種小麥各選用10塊面積相同的試驗(yàn)田進(jìn)行種植試驗(yàn),它們的平均畝產(chǎn)量分別是 =610千克, =608千克,畝產(chǎn)量的方差分別是S2甲=29.6,S2乙=2.7.則關(guān)于兩種小麥推廣種植的合理決策是( )
A.甲的平均畝產(chǎn)量較高,應(yīng)推廣甲
B.甲、乙的平均畝產(chǎn)量相差不多,均可推廣
C.甲的平均畝產(chǎn)量較高,且畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣甲
D.甲、乙的平均畝產(chǎn)量相差不多,但乙的畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣乙
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)(1)班共46人,前段時(shí)間有一位同學(xué)身患重病,其余同學(xué)獻(xiàn)“愛(ài)心”為其捐款,共捐得156元,捐款情況見(jiàn)下表,由于記錄的同學(xué)不小心,造成捐款3元和4元的人數(shù)看不清楚了.請(qǐng)你根據(jù)表格提供的信息,求出捐款3元和4元的人數(shù)分別是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com