如圖,在邊長為4的正方形ABCD中,點(diǎn)P在AB上從A向B運(yùn)動(dòng),連結(jié)DP交AC于點(diǎn)Q.
(1)試證明:無論點(diǎn)P運(yùn)動(dòng)到AB上何處時(shí),都有△ADQ≌△ABQ;
(2)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)到什么位置時(shí),△ADQ的面積是正方形ABCD面積的;
(3)若點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B,再繼續(xù)在BC上運(yùn)動(dòng)到點(diǎn)C,在整個(gè)運(yùn)動(dòng)過程中,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△ADQ恰為等腰三角形.
(1)證明:△ADQ≌△ABQ;
(2)以A為原點(diǎn)建立如圖所示的直角坐標(biāo)系,過點(diǎn)Q作QE⊥y軸于點(diǎn)E,QF⊥x軸于點(diǎn)F.
AD×QE=S正方形ABCD= ∴QE=
∵點(diǎn)Q在正方形對(duì)角線AC上 ∴Q點(diǎn)的坐標(biāo)為
∴過點(diǎn)D(0,4),兩點(diǎn)的函數(shù)關(guān)系式為:y=-2x+4,當(dāng)y=0時(shí),x=2,即P運(yùn)動(dòng)到AB中點(diǎn)時(shí),△ADQ的面積是正方形ABCD面積的;
(3)若△ADQ是等腰三角形,則有QD=QA或DA=DQ或AQ=AD
①當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B重合時(shí),由四邊形ABCD是正方形知 QD=QA此時(shí)△ADQ是等腰三角形;
②當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),點(diǎn)Q與點(diǎn)C也重合,此時(shí)DA=DQ,△ADQ是等腰三角形;
③如圖,設(shè)點(diǎn)P在BC邊上運(yùn)動(dòng)到CP=x時(shí),有AD=AQ
∵AD∥BC ∴∠ADQ=∠CPQ.
又∵∠AQD=∠CQP,∠ADQ=∠AQD,
∴∠CQP=∠CPQ.
∴CQ=CP=x.
∵AC=,AQ=AD=4.
∴x=CQ=AC-AQ=-4.
即當(dāng)CP=-4時(shí),△ADQ是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,以點(diǎn)B為圓心、BC長為半徑畫弧,交AD邊于點(diǎn)E,連接BE,過C點(diǎn)作CF⊥BE,垂足為F.猜想線段BF與圖中現(xiàn)有的哪一條線段相等?先將你猜想出的結(jié)論填寫在下面的橫線上,并加以證明.
結(jié)論:BF=______.
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
正方形的性質(zhì):正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì),正方形的四個(gè)角都______;四條邊都______且__________________;正方形的兩條對(duì)角線______,并且互相______,每條對(duì)角線平分______對(duì)角.它有______條對(duì)稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
菱形的判定:一組鄰邊相等的______是菱形;四條邊______的四邊形是菱形;對(duì)角線___
___的平行四邊形是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com