【題目】如圖,AB是⊙O的直徑,弦BC=4㎝,F(xiàn)是弦BC的中點,∠ABC=60°,若動點E以1 ㎝/s的速度從A點出發(fā)在AB上沿著A→B→A運動,設(shè)運動時間為t(s)(0≤t<16),連接EF,當△BEF是直角三角形時,t(s)的值為
【答案】4.
【解析】根據(jù)圓周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根據(jù)含30度的直角三角形三邊的關(guān)系得到AB=2BC=8cm,而F是弦BC的中點,所以當EF∥AC時,△BEF是直角三角形,此時E為AB的中點,易得t=4s;當從A點出發(fā)運動到B點名,再運動到O點時,此時t=12s;也可以過F點作AB的垂線,點E點運動到垂足時,△BEF是直角三角形.
∵AB是⊙O的直徑,
∴∠C=90°,
而∠ABC=60°,BC=4cm,
∴AB=2BC=8cm,
∵F是弦BC的中點,
∴當EF∥AC時,△BEF是直角三角形,
此時E為AB的中點,即AE=AO=4cm,
∴t= =4.
【考點精析】本題主要考查了圓周角定理的相關(guān)知識點,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠準備翻建新的大門,廠門要求設(shè)計成軸對稱的拱形曲線.已知廠門的最大寬度AB=12m,最大高度OC=4m,工廠的運輸卡車的高度是3m,寬度是5.8m.現(xiàn)設(shè)計了兩種方案.方案一:建成拋物線形狀(如圖1);方案二:建成圓弧形狀(如圖2).為確保工廠的卡車在通過廠門時更安全,你認為應(yīng)采用哪種設(shè)計方案?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=6,DC=8,菱形EFGH的三個頂點E、G、H分別在矩形ABCD的邊AB、CD、DA上,AH=2.
(1)已知DG=6,求AE的長;
(2)已知DG=2,求證:四邊形EFGH為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D.
(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明
如圖,FG//CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG//CD (已知)
∴∠2=_________(____________________________)
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC//__________(_____________________________)
∴∠B+________=180°(______________________________)
又∵∠B=50°
∴∠BDE=________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲處表示兩條路的交叉口,乙處也是兩條路的交叉口,如果用(1,3)表示甲處的位置,那么“(1,3)→(2,3)→(3,3)→(4,3)→(4,2)→(4,1)→(4,0)”表示甲處到乙處的一種路線,若圖中一個單位長度表示5Km,請你用上述表示法寫出甲處到乙處的另兩種走法,最短距離是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是根據(jù)對初一(1)班的50名同學(xué)平時最愛吃的食物的種類進行的問卷調(diào)查繪制成的統(tǒng)計表,請?zhí)顫M缺少的項并回答后面的問題.
肉類 | 蔬菜類 | 瓜果類 | 水產(chǎn)類 | |
男生 | 22 | 1 | 2 | |
女生 | 4 | 5 | 3 | |
頻率 | 64% | 14% | 12% |
(1)選擇適當?shù)慕y(tǒng)計圖表示男生平時最愛吃的食物的種類情況;
(2)就給出的初一(1)班的同學(xué)平時最愛吃的食物的種類情況,請你結(jié)合自己的年齡特點簡略談?wù)勛约旱目捶ǎ?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB=8,延長線段AB至C,使得BC=AB,延長線段BA至D,使得AD=AB,則下列判斷正確的是 ( )
A. BC=AD B. BD=3BC C. BD=4AD D. AC=6AD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com