【題目】完成下面的證明
如圖,FG//CD,∠1=∠3,∠B=50°,求∠BDE的度數.
解:∵FG//CD (已知)
∴∠2=_________(____________________________)
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC//__________(_____________________________)
∴∠B+________=180°(______________________________)
又∵∠B=50°
∴∠BDE=________________.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知線段 AB 的兩個端點坐標分別為A(a,5),B(8,b),且.
(1)求 a,b 的值;
(2)①連OA,OB,則SAOB = 平方單位;(說明:SAOB 表示三角形 AOB 的面積,下同.)
②點P從O點出發(fā)沿 y 軸負方向運動,速度為每秒1個單位,連PA交OB于C,則運動多少秒時,SABC=SPOC ;
(3)在(2)的條件下,過P作直線m∥AB,過B作直線 l∥x軸,直線m和直線l相交于點Q,請直接寫出點Q的坐標 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“五一”小長假期間,某超市為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”、“30元”的字樣.規(guī)定:顧客在本超市一次性購物滿500元以上均可獲得兩次摸球的機會(摸出小球后放回).超市根據兩小球所標金額的和返還相應的代金券.
(1)顧客甲購物1000元,則他最少可獲元代金券,最多可獲元代金券.
(2)請用樹形圖或列表方法,求出顧客甲獲得不低于30元(含30元)代金券的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,點O是AC與BD的交點,過點O的直線與BA的延長線,DC的延長線分別交于點E,F.
(1)求證:△AOE≌△COF.
(2)連接EC,AF,則EF與AC滿足什么數量關系時,四邊形AECF是矩形?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】己知:如圖,E、F分別是ABCD的AD、BC邊上的點,且AE=CF.
(1)求證:△ABE≌△CDF;
(2)若M、N分別是BE、DF的中點,連接MF、EN,試判斷四邊形MFNE是怎樣的四邊形,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列推理過程:如圖,EF∥AD,∠1=∠2,∠BAC=80°.求∠AGD 的度數.
∵ EF∥AD (已知)
∴∠2= ( )
又∵∠1=∠2 (已知)
∴∠1=∠3(等量代換)
∴ AB∥ ( )
∴∠BAC+ =180°(兩直線平行 ,同旁內角互補)
∵∠BAC=80°(已知)
∴∠AGD=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣ x2+bx+c經過點A、C,與AB交于點D.
(1)求拋物線的函數解析式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.
①求S關于m的函數表達式;
②當S最大時,在拋物線y=﹣ x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com