【題目】如圖所示,是等腰直角三角形,其中,是邊上的一點,連接,過作交于,,且,連接并延長,交于點.若四邊形的面積為,則的面積為__________.
【答案】8
【解析】
連接EC,過點B作BH⊥BE交FM的延長線于點H,由“SAS”可證△BAE≌△CAF,可得BE=CF,∠AEB=∠AFC=90°,S△ABE=S△ACF,通過證明△BMH≌△CMF,可得BM=CM,由中線的性質可得S△BME=S△MCE,即可求解.
解:如圖,連接EC,過點B作BH⊥BE交FM的延長線于點H,
∵AF⊥AE,AF=AE
∴∠EAF=90°,∠AEF=∠AFE=45°,
∵∠BAC=90°
∴∠BAC=∠EAF,
∴∠BAE=∠CAF,
∵△ABC是等腰直角三角形,
∴AB=AC,∠ABC=45°,
在△BAE和△CAF中
∴△BAE≌△CAF(SAS),
∴BE=CF,∠AEB=∠AFC=90°,S△ABE=S△ACF,
∴∠EAF+∠AFC=180°,
∴AE∥CF,
∴S△CEF=S△CEF=S△ABE,
∵∠AEF=∠AFE=45°,∠AEB=∠AFC=90°,
∴∠BEH=45°,∠CFE=45°,
∵BH⊥BE,
∴∠BEH=∠BHE=45°,
∴BE=EH=CF,且∠BHE=∠CFE=45°,∠BMH=∠CMF,
∴△BMH≌△CMF(AAS)
∴BM=CM,
∴S△BME=S△MCE,
∴S△BME+S△ABE=S△CME+S△CEF,
∴S四邊形ABME=S△CMF=8,
故答案為8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知直線l1∥l2,線段AB在直線l1上,BC垂直于l1交l2于點C,且AB=BC,P是線段BC上異于兩端點的一點,過點P的直線分別交l2、l1于點D. E(點A. E位于點B的兩側),滿足BP=BE,連接AP、CE.
(1)求證:△ABP≌△CBE;
(2)連結AD、BD,BD與AP相交于點F. 如圖2.
①當=2時,求證:AP⊥BD;
②當=n(n>1)時,設△DAP的面積為S1,△EPC的面積為S2,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB 是⊙M 的直徑,BC 是⊙M 的切線,切點為 B,C 是 BC 上(除 B 點外)的任意一點,連接 CM 交⊙M 于點 G,過點 C 作 DC⊥BC 交 BG 的 延長線于點 D,連接 AG 并延長交 BC 于點 E.
(1)求證:△ABE∽△BCD;
(2)若 MB=BE=1,求 CD 的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設a,b,c是△ABC的三條邊,關于x的方程x2+x+c-a=0有兩個相等的實數(shù)根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個根,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(背景介紹)勾股定理是幾何學中的明珠,充滿著魅力.千百年來,人們對它的證明趨之若騖,其中有著名的數(shù)學家,也有業(yè)余數(shù)學愛好者.向常春在1994年構造發(fā)現(xiàn)了一個新的證法.
(小試牛刀)把兩個全等的直角三角形如圖1放置,其三邊長分別為a、b、c.顯然,∠DAB=∠B=90°,AC⊥DE.請用a、b、c分別表示出梯形ABCD、四邊形AECD、△EBC的面積,再探究這三個圖形面積之間的關系,可得到勾股定理:
S梯形ABCD= ,
S△EBC= ,
S四邊形AECD= ,
則它們滿足的關系式為 ,經化簡,可得到勾股定理.
(知識運用)(1)如圖2,鐵路上A、B兩點(看作直線上的兩點)相距40千米,C、D為兩個村莊(看作兩個點),AD⊥AB,BC⊥AB,垂足分別為A、B,AD=25千米,BC=16千米,則兩個村莊的距離為 千米(直接填空);
(2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一個供應站P,使得PC=PD,請用尺規(guī)作圖在圖2中作出P點的位置并求出AP的距離.
(知識遷移)借助上面的思考過程與幾何模型,求代數(shù)式最小值(0<x<16)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司計劃購買A,B兩種型號的電腦,已知購買一臺A型電腦需0.6萬元,購買一臺B型電腦需0.4萬元,該公司準備投入資金y萬元,全部用于購進35臺這兩種型號的電腦,設購進A型電腦x臺.
(1)求y關于x的函數(shù)解析式;
(2)若購進B型電腦的數(shù)量不超過A型電腦數(shù)量的2倍,則該公司至少需要投入資金多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,是延長線上的一點,點是的中點。
(1)實踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標明相應字母(保留作圖痕跡,不寫作法)。
①作的平分線. ②連接并延長交于點.
(2)猜想與證明:試猜想與有怎樣的關系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鐵路MN和公路PQ在點O處交匯,∠QON=30°,公路PQ上A處距O點240米,如果火車行駛時,周圍200米以內會受到噪音的影響,那么火車在鐵路MN上沿ON方向以72千米/時的速度行駛時,求A處受噪音影響的時間。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com