【題目】在平面直角坐標系中,借助直角三角板可以找到一元二次方程的實數(shù)根,比如對于方程 ,操作步驟是:
第一步:根據(jù)方程系數(shù)特征,確定一對固定點A(0,1),B(5,2);
第二步:在坐標平面中移動一個直角三角板,使一條直角邊恒過點A,另一條直角邊恒過點B;
第三步:在移動過程中,當三角板的直角頂點落在x軸上點C處時,點C 的橫坐標m即為該方程的一個實數(shù)根(如圖1)
第四步:調(diào)整三角板直角頂點的位置,當它落在x軸上另一點D處時,點D 的橫坐標為n即為該方程的另一個實數(shù)根。
(1)在圖2 中,按照“第四步“的操作方法作出點D(請保留作出點D時直角三角板兩條直角邊的痕跡)
(2)結(jié)合圖1,請證明“第三步”操作得到的m就是方程 的一個實數(shù)根;
(3)上述操作的關鍵是確定兩個固定點的位置,若要以此方法找到一元二次方程 的實數(shù)根,請你直接寫出一對固定點的坐標;
(4)實際上,(3)中的固定點有無數(shù)對,一般地,當 , , , 與a,b,c之間滿足怎樣的關系時,點P( , ),Q( , )就是符合要求的一對固定點?
【答案】
(1)
解:如圖2所示:
(2)
證明:在圖1中,過點B作BD⊥x軸,交x軸于點D.
根據(jù)題意可證△AOC∽△CDB.
∴.
∴.
∴m(5-m)=2.
∴m2-5m+2=0.
∴m是方程x2-5x+2=0的實數(shù)根.
(3)
解:方程ax2+bx+c=0(a≠0)可化為
x2+x+=0.
模仿研究小組作法可得:A(0,1),B(-,)或A(0,),B(-,c)等.
(4)
解:以圖3為例:P(m1,n1)Q(m2,n2),
設方程的根為x,根據(jù)三角形相似可得.=.
上式可化為x2-(m1+m2)x+m1m2+n1n2=0.
又ax2+bx+c=0,
即x2+x+=0.
比較系數(shù)可得:m1+m2=-.
m1m2+n1n2=.
【解析】(1)根據(jù)題目中給的操作步驟操作即可得出圖2中的圖.
(2)在圖1中,過點B作BD⊥x軸,交x軸于點D.依題意可證△AOC∽△CDB.然后根據(jù)相似三角形對應邊的比相等列出式子,化簡后為m2-5m+2=0,從而得證。
(3)將方程ax2+bx+c=0(a≠0)可化為x2+x+=0.模仿研究小組作法即可得答案。
(4)以圖3為例:P(m1,n1)Q(m2,n2),設方程的根為x,根據(jù)三角形相似可得.=.化簡后為x2-(m1+m2)x+m1m2+n1n2=0.
又x2+x+=0.再依據(jù)相對應的系數(shù)相等即可求出。
【考點精析】利用根與系數(shù)的關系和相似三角形的判定與性質(zhì)對題目進行判斷即可得到答案,需要熟知一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OE⊥AB,OF⊥CD.
(1)若OC恰好是∠AOE的平分線,則OA是∠COF的平分線嗎?請說明理由;
(2)若∠EOF=5∠BOD,求∠COE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖示,AB∥CD,且點E在射線AB與CD之間,請說明∠AEC=∠A+∠C的理由.
(2)現(xiàn)在如圖b示,仍有AB∥CD,但點E在AB與CD的上方,①請嘗試探索∠1,∠2,∠E三者的數(shù)量關系. ②請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分;
(1)直接寫出圖中∠AOC的對頂角為 ,∠BOE的鄰補角為 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰直角△ABC,點P是斜邊BC上一點(不與B,C重合),PE是△ABP的外接圓⊙O的直徑
(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象l經(jīng)過點A(2,5),B(-4,-1)兩點.
(1)求一次函數(shù)表達式.
(2)若點E在x軸上,且E(2,O),點C為直線l與x軸的交點,求△CDE的面積.
(3)你能求出點E到直線l的距離嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水龍頭關閉不緊會造成滴水,小明用可以顯示水量的容器做圖①所示的試驗,并根據(jù)試驗數(shù)據(jù)繪制出圖②所示的容器內(nèi)盛水量W(L)與滴水時間t(h)的函數(shù)關系圖象,請結(jié)合圖象解答下列問題:
(1)容器內(nèi)原有水多少?
(2)求W與t之間的函數(shù)關系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?
圖 ① 圖②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人周末從同一地點出發(fā)去某景點,因乙臨時有事,甲坐地鐵先出發(fā),甲出發(fā)0.2小時后乙開汽車前往.設甲行駛的時間為x(h),甲、乙兩人行駛的路程分別為y1(km)與y2(km).如圖①是y1與y2關于x的函數(shù)圖象.
(1)分別求線段OA與線段BC所表示的y1與y2關于x的函數(shù)表達式;
(2)當x為多少時,兩人相距6km?
(3)設兩人相距S千米,在圖②所給的直角坐標系中畫出S關于x的函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點D、E分別在邊BC、AC上,AE=BD,連接DE,過點E作EF⊥DE,交線段BC的延長線于點F.
(1)求證:CE=CF;
(2)若BD=CE,AB=9,求線段DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com