【題目】如圖,四邊形 ABCD 中,AEDF 分別是∠BAD,∠ADC 的平分線,且 AEDF 于點 O 延長 DF AB 的延長線于點 M

1)求證:ABDC ;

2)若∠MBC=120°,∠BAD=108°,求∠C,∠DFE 的度數(shù).

【答案】1)見詳解;(2C120°,∠DFE24°

【解析】

1)根據(jù)角平分線的定義可得∠DAB2EAB,∠ADC2ADF,根據(jù)垂直的定義可得∠AOD90°,即∠DAE+ADF90°,從而可得∠BAD+ADC2(∠DAE+ADF)=180°,即可得證;

2)由ABDC可得∠C=∠MBC,從而得出∠ADC72°,再根據(jù)角平分線的定義以及三角形內(nèi)角和公式解答即可.

解:(1)證明:∵AE,DF分別是∠BAD,∠ADC的平分線,

∴∠DAB2EAB,∠ADC2ADF,

AEDF

∴∠AOD90°.

∴∠DAE+ADF90°,

∴∠BAD+ADC2(∠DAE+ADF)=180°,

ABDC;

2)∵ABDC,

∴∠C=∠MBC

∵∠MBC120°,

∴∠C120°,

∵∠BAD108°,

∴∠ADC72°,

,

∴∠DFE180°﹣(∠C+CDF)=24°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰△ABC中,CA=CB=6,∠ACB=120°,點D在線段AB上運動(不與AB重合),將△CAD與△CBD分別沿直線CACB翻折得到△CAP與△CBQ,給出下列結(jié)論:

CD=CP=CQ;②∠PCQ為定值;③△PCQ面積的最小值為;④當點DAB的中點時,△PDQ是等邊三角形,其中正確結(jié)論的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某教研機構(gòu)為了解在校初中生閱讀數(shù)學教科書的現(xiàn)狀,隨機抽取某校部分初中學生進行了調(diào)查.依據(jù)相關(guān)數(shù)據(jù)繪制成如圖所示的不完整的統(tǒng)計圖表,請根據(jù)圖表中的信息解答下列問題:

某校初中生閱讀數(shù)學教科書情況統(tǒng)計圖表

類別

人數(shù)

占總?cè)藬?shù)比例

重視

a

0.3

一般

57

0.38

不重視

b

c

說不清楚

9

0.06

(1)求樣本容量及表格中a,b,c的值,并補全統(tǒng)計圖.

(2)若該校共有初中生2 300名,請估計該!安恢匾曢喿x數(shù)學教科書”的初中生人數(shù).

(3)①根據(jù)上面的統(tǒng)計結(jié)果,談?wù)勀銓υ撔3踔猩喿x數(shù)學教科書的現(xiàn)狀的看法及建議;

②如果要了解全省初中生閱讀數(shù)學教科書的情況,你認為應(yīng)該如何進行抽樣?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,B=∠C,ADB=∠DEC,AB=DC.

1)求證:ADE 為等腰三角形.

2)若∠B=60°,求證:△ADE 為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1, ABC中,CDABD,BD: AD:CD=2:3:4,

(1)試說明△ABC是等腰三角形;

(2)已知SABC=40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止.設(shè)點M運動的時間為t(),若△DMN的邊與BC平行,求t的值;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個三角形的第一條邊長為2a+5b,第二條邊比第一條邊長3a﹣2b,第三條邊比第二條邊短3a.

1則第二邊的邊長為 ,第三邊的邊長為 ;

2用含a,b的式子表示這個三角形的周長,并化簡;

3)若a,b滿足|a﹣5|+b﹣32=0,求出這個三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1 2

3 4

5 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同一個圓的內(nèi)接正方形和正三角形的邊心距的比為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究與發(fā)現(xiàn):

如圖1所示的圖形,像我們常見的學習用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:

(1)觀察規(guī)形圖,試探究∠BDC與∠A、B、C之間的關(guān)系,并說明理由;

(2)請你直接利用以上結(jié)論,解決以下三個問題:

①如圖2,把一塊三角尺XYZ放置在ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,若∠A=50°,則∠ABX+ACX=__________°;

②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,DBE=130°,求∠DCE的度數(shù);

③如圖4,ABD,ACD10等分線相交于點G1、G2…、G9,若∠BDC=140°,BG1C=77°,求∠A的度數(shù).

查看答案和解析>>

同步練習冊答案