【題目】如圖,等腰△ABC中,CA=CB=6,∠ACB=120°,點(diǎn)D在線段AB上運(yùn)動(dòng)(不與A、B重合),將△CAD與△CBD分別沿直線CA、CB翻折得到△CAP與△CBQ,給出下列結(jié)論:
①CD=CP=CQ;②∠PCQ為定值;③△PCQ面積的最小值為;④當(dāng)點(diǎn)D在AB的中點(diǎn)時(shí),△PDQ是等邊三角形,其中正確結(jié)論的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】①由折疊直接得到結(jié)論;②由折疊的性質(zhì)求出∠ACP +∠BCQ=120°,再用周角的定義求出∠PCQ=120°;③先作出△PCQ的邊PC上的高,用三角函數(shù)求出QE=CQ,得到S△PCQ =CD2,判斷出△PCQ面積最小時(shí),點(diǎn)D的位置,再求△PCQ面積的最小值即可;④先判斷出△APD 是等邊三角形,△BDQ是等邊三角形,再求出∠PDQ=60°,即可得結(jié)論.
① ∵將△ CAD 與△ CBD 分別沿直線 CA、CB 翻折得到△CAP與△CBQ ,
∴CP=CD=CQ,
∴ ①正確;
② ∵將△ CAD與△CBD 分別沿直線CA、CB翻折得到△CAP 與△CBQ ,
∴∠ACP=∠ACD,∠BCQ=∠BCD ,
∴∠ACP +∠BCQ=∠ACD +∠BCD=∠ACB=120°,
∴∠ PCQ=360°﹣(∠ACP +BCQ +∠ACB ) =360°﹣(120°+120°) =120°,
∴∠ PCQ 的大小不變;
∴ ② 正確;
③ 如圖,過點(diǎn)Q作QE ⊥ PC 交PC延長(zhǎng)線于 E ,
∵∠PCQ=120°,
∴∠QCE=60°,
在 Rt△QCE 中, sin∠QCE=,
∴QE=CQ×sin∠QCE=CQ×sin60°=CQ ,
∵CP=CD=CQ,
∴ S△PCQ =×CP×QE=CP×CQ=CD 2,
∴ CD 最短時(shí),S △ PCQ最小,
即:CD ⊥ AB 時(shí),CD最短,
過點(diǎn) C 作 CF ⊥ AB,此時(shí) CF 就是最短的 CD ,
∵ AC=BC=6,∠ ACB=120°,
∴∠ ABC=30°,
∴CF=BC=3,
即:CD最短為3,
∴ S △ PCQ最小 =,
∴ ③錯(cuò)誤;
④ ∵將△CAD與△CBD 分別沿直線CA、CB翻折得到△CAP與△CBQ ,
∴ AD=AP,∠ DAC=∠ PAC,
∵∠ DAC=30°,
∴∠ APD=60°,
∴△ APD是等邊三角形,
∴ PD=AD,∠ ADP=60°,
同理:△ BDQ是等邊三角形,
∴ DQ=BD,∠ BDQ=60°,
∴∠ PDQ=60°,
∵當(dāng)點(diǎn)D在AB的中點(diǎn),
∴AD=BD,
∴PD=DQ,
∴△DPQ 是等邊三角形.
∴ ④正確.
正確的答案為:①②④ .
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP平分∠MON,A是邊OM上一點(diǎn),以點(diǎn)A為圓心、大于點(diǎn)A到ON的距離為半徑作弧,交ON于點(diǎn)B、C,再分別以點(diǎn)B、C為圓心,大于BC的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)D、作直線AD分別交OP、ON于點(diǎn)E、F.若∠MON=60°,EF=1,則OA=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)二次函數(shù)的圖象,三位同學(xué)分別說出了它的一些特點(diǎn):
甲:對(duì)稱軸為直線x=4
乙:與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)都是整數(shù).
丙:與y軸交點(diǎn)的縱坐標(biāo)也是整數(shù),且以這三個(gè)點(diǎn)為頂點(diǎn)的三角形面積為3.請(qǐng)你寫出滿足上述全部特點(diǎn)的一個(gè)二次函數(shù)解析式__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若此方程的兩實(shí)數(shù)根x1,x2滿足x12+x22=11,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】班級(jí)組織同學(xué)乘大巴車前往“研學(xué)旅行”基地開展愛國(guó)教育活動(dòng),基地離學(xué)校有90公里,隊(duì)伍8:00從學(xué)校出發(fā).蘇老師因有事情,8:30從學(xué)校自駕小車以大巴1.5倍的速度追趕,追上大巴后繼續(xù)前行,結(jié)果比隊(duì)伍提前15分鐘到達(dá)基地.問:
(1)大巴與小車的平均速度各是多少?
(2)蘇老師追上大巴的地點(diǎn)到基地的路程有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行慢跑練習(xí),慢跑路程y(米)與所用時(shí)間t(分鐘)之間的關(guān)系如圖所示,下列說法錯(cuò)誤的是( )
A. 前2分鐘,乙的平均速度比甲快
B. 5分鐘時(shí)兩人都跑了500米
C. 甲跑完800米的平均速度為100米/分
D. 甲乙兩人8分鐘各跑了800米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:是某出租車單程收費(fèi)y(元)與行駛路程x(千米)之間的函數(shù)關(guān)系圖象,根據(jù)圖象回答下列問題:
(1)當(dāng)行使8千米時(shí),收費(fèi)應(yīng)為 元;
(2)從圖象上你能獲得哪些信息?(請(qǐng)寫出2條)
① ________
②____________________________
(3)求出收費(fèi)y(元)與行使x(千米)(x≥3)之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次科技知識(shí)競(jìng)賽中,兩組學(xué)生成績(jī)統(tǒng)計(jì)如下表,通過計(jì)算可知兩組的方差為 , .下列說法:
①兩組的平均數(shù)相同;
②甲組學(xué)生成績(jī)比乙組學(xué)生成績(jī)穩(wěn)定;
③甲組成績(jī)的眾數(shù)>乙組成績(jī)的眾數(shù);
④兩組成績(jī)的中位數(shù)均為80,但成績(jī)≥80的人數(shù)甲組比乙組多,從中位數(shù)來看,甲組成績(jī)總體比乙組好;⑤成績(jī)高于或等于90分的人數(shù)乙組比甲組多,高分段乙組成績(jī)比甲組好.其中正確的共有( )
分?jǐn)?shù) | 50 | 60 | 70 | 80 | 90 | 100 | |
人 | 甲組 | 2 | 5 | 10 | 13 | 14 | 6 |
乙組 | 4 | 4 | 16 | 2 | 12 | 12 |
A. 2種 B. 3種 C. 4種 D. 5種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ABCD 中,AE,DF 分別是∠BAD,∠ADC 的平分線,且 AE⊥DF 于點(diǎn) O . 延長(zhǎng) DF 交 AB 的延長(zhǎng)線于點(diǎn) M .
(1)求證:AB∥DC ;
(2)若∠MBC=120°,∠BAD=108°,求∠C,∠DFE 的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com