【題目】如圖所示,在△ABC中,∠C=90°,AC=5cm,BC=7cm,點(diǎn)P從點(diǎn)A出發(fā)沿邊AC向點(diǎn)C以1cm/s的速度移動(dòng),點(diǎn)Q從C點(diǎn)出發(fā)沿CB邊向點(diǎn)B以2cm/s的速度移動(dòng).
(1)如果P、Q同時(shí)出發(fā),幾秒鐘后,可使△PCQ的面積為4cm2?
(2)點(diǎn)P、Q在移動(dòng)過(guò)程中,是否存在某一時(shí)刻,使得△PCQ的面積等于△ABC的面積的一半?若存在,求出運(yùn)動(dòng)的時(shí)間;若不存在,說(shuō)明理由.
【答案】(1)1s后;(2)不存在,理由見(jiàn)解析
【解析】
(1)設(shè)P、Q同時(shí)出發(fā),x秒鐘后,AP=xcm,PC=(5﹣x)cm,CQ=2xcm,此時(shí)△PCQ的面積為:×2x(5﹣x),令該式=4,由此等量關(guān)系列出方程求出符合題意的值;
(2)求出△ABC的面積進(jìn)而利用b2﹣4ac的符號(hào)得出即可.
解:(1)設(shè)xs后,可使△PCQ的面積為4cm2.
由題意得,AP=xcm,PC=(5﹣x)cm,CQ=2xcm,
則(5﹣x)2x=4,
整理,得x2﹣5x+4=0,
解得x1=1,x2=4(舍去).
所以P、Q同時(shí)出發(fā),1s后可使△PCQ的面積為4cm2;
(2)∵S△ABC=×5×7=,
∴當(dāng)△PCQ的面積等于△ABC的面積的一半,即S△PCQ=,
故(5﹣x)2x=,
整理得:4x2﹣20x+35=0,
b2﹣4ac=400﹣4×4×35=﹣160<0,
故此方程無(wú)解,則△PCQ的面積不可能等于△ABC的面積的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫(xiě)上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿(mǎn)足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機(jī)抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機(jī)抽取一張(不放回),再?gòu)氖O碌目ㄆ须S機(jī)抽取一張(卡片用A,B,C,D表示).請(qǐng)用列表或畫(huà)樹(shù)形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷(xiāo)一種學(xué)生用雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元,市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷(xiāo)售量(個(gè))與y銷(xiāo)售單價(jià)x(元)有如下關(guān)系:,設(shè)這種雙肩包每天的銷(xiāo)售利潤(rùn)為w元.
(1)這種雙肩包銷(xiāo)售單價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?
(2)如果物價(jià)部門(mén)規(guī)定這種雙肩包的銷(xiāo)售單價(jià)不高于42元,該商店銷(xiāo)售這種雙肩包每天要獲得200元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】天貓商城某網(wǎng)店銷(xiāo)售某款藍(lán)牙耳機(jī),進(jìn)價(jià)為100元在元旦即將來(lái)臨之際,開(kāi)展了市場(chǎng)調(diào)查,當(dāng)藍(lán)牙耳機(jī)銷(xiāo)售單價(jià)是180元時(shí),平均每月的銷(xiāo)售量是200件,若銷(xiāo)售單價(jià)每降低2元,平均每月就可以多售出10件.
設(shè)每件商品降價(jià)x元,該網(wǎng)店平均每月獲得的利潤(rùn)為y元,請(qǐng)寫(xiě)出y與x元之間的函數(shù)關(guān)系;
該網(wǎng)店應(yīng)該如何定價(jià)才能使得平均每月獲得的利潤(rùn)最大,最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于的一元二次方程()有兩個(gè)不相等的實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,那么稱(chēng)這樣的方程為“倍根方程”,例如,方程的兩個(gè)根是2和4,則方程就是“倍根方程”.
(1)若一元二次方程是“倍根方程”,則______;
(2)若()是“倍根方程”,求代數(shù)式的值;
(3)若方程()是倍根方程,且相異兩點(diǎn),,都在拋物線(xiàn)上,求一元二次方程()的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把菱形向右平移至的位置,作,垂足為,與相交于點(diǎn),的延長(zhǎng)線(xiàn)交于點(diǎn),連接,則下列結(jié)論:
①;②;③:④.
則其中所有成立的結(jié)論是( )
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得Rt△FOE,將線(xiàn)段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線(xiàn)段ED,分別以O,E為圓心,OA、ED長(zhǎng)為半徑畫(huà)弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=x+4的圖象與反比例函數(shù)y2=的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求k.
(2)根據(jù)圖象直接寫(xiě)出y1>y2時(shí),x的取值范圍.
(3)若反比例函數(shù)y2=與一次函數(shù)y1=x+4的圖象總有交點(diǎn),求k的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,過(guò)點(diǎn)A(﹣,0)的兩條直線(xiàn)分別交y軸于B、C兩點(diǎn),且B、C兩點(diǎn)的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個(gè)根.
(1)求線(xiàn)段BC的長(zhǎng)度;
(2)試問(wèn):直線(xiàn)AC與直線(xiàn)AB是否垂直?請(qǐng)說(shuō)明理由;
(3)若點(diǎn)D在直線(xiàn)AC上,且DB=DC,求點(diǎn)D的坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com