【題目】計(jì)算下列各題
(1)計(jì)算: ﹣( )﹣1+(π﹣ )0﹣(﹣1)100;
(2)已知|a+1|+(b﹣3)2=0,求代數(shù)式( ﹣ )÷ 的值.
【答案】
(1)解:原式=3﹣4+1﹣1=﹣1
(2)解:∵|a+1|+(b﹣3)2=0,
∴a+1=0,b﹣3=0,即a=﹣1,b=3.
則原式= ÷ = × = = =﹣
【解析】(1)原式第一項(xiàng)利用二次根式的化簡公式計(jì)算,第二項(xiàng)利用負(fù)指數(shù)冪法則計(jì)算,第三項(xiàng)利用零指數(shù)冪法則計(jì)算,最后一項(xiàng)利用乘方的意義化簡,計(jì)算即可得到結(jié)果;(2)利用非負(fù)數(shù)的性質(zhì)求出a與b的值,原式通分并利用同分母分式的加法法則計(jì)算,將a與b的值代入計(jì)算即可求出值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識(shí),掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的理解,了解aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,和是兩個(gè)全等的三角形,,.現(xiàn)將和按如圖所示的方式疊放在一起,保持不動(dòng),運(yùn)動(dòng),且滿足:點(diǎn)E在邊BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),且邊DE始終經(jīng)過點(diǎn)A,EF與AC交于點(diǎn)M .
(1)求證:∠BAE=∠MEC;
(2)當(dāng)E在BC中點(diǎn)時(shí),請求出ME:MF的值;
(3)在的運(yùn)動(dòng)過程中,能否構(gòu)成等腰三角形?若能,請直接寫出所有符合條件的BE的長;若不能,則請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+4與x軸交于A(﹣2,0)、B兩點(diǎn),與y軸交于C點(diǎn),其對稱軸為直線x=1.
(1)直接寫出拋物線的解析式:;
(2)把線段AC沿x軸向右平移,設(shè)平移后A、C的對應(yīng)點(diǎn)分別為A′、C′,當(dāng)C′落在拋物線上時(shí),求A′、C′的坐標(biāo);
(3)除(2)中的點(diǎn)A′、C′外,在x軸和拋物線上是否還分別存在點(diǎn)E、F,使得以A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,求出E、F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,點(diǎn)D在AB的延長線上.
(1)利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法). ①作∠CBD的平分線BM;
②作邊BC上的中線AE,并延長AE交BM于點(diǎn)F.
(2)由(1)得:BF與邊AC的位置關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場促銷,小魚將促銷信息告訴了媽媽,假設(shè)某一商品的定價(jià)為,并列出不等式為,那么小魚告訴媽媽的信息是( )
A. 買兩件等值的商品可減100元,再打三折,最后不到1000元
B. 買兩件等值的商品可打三折,再減100元,最后不到1000元
C. 買兩件等值的商品可減100元,再打七折,最后不到1000元
D. 買兩件等值的商品可打七折,再減100元,最后不到1000元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,BE平分∠ABC交AC邊于點(diǎn)E,過點(diǎn)E作DE∥BC交AB于點(diǎn)D,
(1)求證:△BDE為等腰三角形;
(2)若點(diǎn)D為AB中點(diǎn),AB=6,求線段BC的長;
(3)在圖2條件下,若∠BAC=60°,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿射線BE運(yùn)動(dòng),請直接寫出圖3當(dāng)△ABP為等腰三角形時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a,b,c是直角三角形的三條邊長,斜邊c上的高的長是h,給出下列結(jié)論:
①以a2,b2,c2的長為邊的三條線段能組成一個(gè)三角形
②以, , 的長為邊的三條線段能組成一個(gè)三角形
③以a+b,c+h,h的長為邊的三條線段能組成直角三角形
④以, , 的長為邊的三條線段能組成直角三角形
其中所有正確結(jié)論的序號(hào)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,∠BAC=30°,點(diǎn) D 是 BC 邊上的點(diǎn),AB=18,將△ABC 沿直線 AD 翻折,使點(diǎn) C 落在 AB 邊上的點(diǎn) E 處,若點(diǎn) P 是直線 AD 上的動(dòng)點(diǎn),則 BP+EP 的最小值是____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com