【題目】如圖1,在正方形ABCD中,延長(zhǎng)BC至M,使BM=DN,連接MN交BD延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:BD+2DE=BM.
(2)如圖2,連接BN交AD于點(diǎn)F,連接MF交BD于點(diǎn)G.若AF:FD=1:2,且CM=2,則線(xiàn)段DG= .
【答案】(1)證明見(jiàn)解析;(2).
【解析】試題(1)根據(jù)結(jié)論可以猜想:要想解決問(wèn)題需要把BD+2DE和BM轉(zhuǎn)化到等腰直角三角形中去,因此想到過(guò)點(diǎn)M作BM的垂線(xiàn)與BD 的延長(zhǎng)線(xiàn)交于點(diǎn)P,然后利用全等三角形的性質(zhì)證明DE=PE即可證出結(jié)論;(2)由AB//CN可得:,所以DN=BM=2AB=2BC,又CM=2,所以BC=AD=CM=2,所以BD=,FD=,由AD//BM可得:,所以,因?yàn)?/span>BD=,所以DG=.
試題解析:(1)證明:過(guò)點(diǎn)M作NPBM,交BD 的延長(zhǎng)線(xiàn)交于點(diǎn)P,
因?yàn)樗倪呅?/span>ABCD是正方形,所以∠BCD =90°,∠DBC=∠BDC=45°,
所以PM∥CN,所以∠N=∠EMP,∠BDC=∠MPB=45°,
所以∠DBC=∠MPB,所以BM=MP,又因?yàn)?/span>BM=DN,所以DN=MP,
又因?yàn)?/span>∠N=∠EMP,∠NED=∠MEP,所以△NDE≌△MPE,所以DE=EP
由勾股定理可得:BP=BM,即BD+2DE=BM
(2)DG=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,、是斜邊上兩點(diǎn),且,將繞順時(shí)針旋轉(zhuǎn)后,得到,連接,則下列結(jié)論不正確的是( )
A.B.為等腰直角三角形
C.平分D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)如圖,△ABC為等腰三角形,AC=BC,以邊BC為直徑的半圓與邊AB,AC分別交于D,E兩點(diǎn),過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F.
(1)判斷DF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若BC=9,EF=1,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y=的圖象上,且OA⊥OB,cosA=,則k的值為( )
A. -3 B. -6 C. -4 D. -
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一個(gè)長(zhǎng)方形休閑廣場(chǎng)的四角都設(shè)計(jì)一塊半徑相同的四分之一圓形的花壇,若圓形的半徑為米,廣場(chǎng)的長(zhǎng)為米,寬為米.
(1)請(qǐng)列式表示花壇的面積和廣場(chǎng)空地的面積;
(2)若休閑廣場(chǎng)的長(zhǎng)為500米,寬為200米,圓形花壇的半徑為20米,求廣場(chǎng)空地的面積;(計(jì)算結(jié)果保留;
(3)在(2)的情況下,若取3.14,求休閑廣場(chǎng)的綠化率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了落實(shí)黨的“精準(zhǔn)扶貧”政策,A、B兩城決定向C、D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20元/噸和25元/噸;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15元/噸和24元/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少?lài)嵎柿希?/span>
(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求出最少總運(yùn)費(fèi).
(3)由于更換車(chē)型,使A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元,這時(shí)怎樣調(diào)運(yùn)才能使總運(yùn)費(fèi)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知含字母a,b的代數(shù)式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)
(1)化簡(jiǎn)代數(shù)式;
(2)小紅取a,b互為倒數(shù)的一對(duì)數(shù)值代入化簡(jiǎn)的代數(shù)式中,恰好計(jì)算得代數(shù)式的值等于0,那么小紅所取的字母b的值等于多少?
(3)聰明的小剛從化簡(jiǎn)的代數(shù)式中發(fā)現(xiàn),只要字母b取一個(gè)固定的數(shù),無(wú)論字母a取何數(shù),代數(shù)式的值恒為一個(gè)不變的數(shù),那么小剛所取的字母b的值是多少呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為﹣20,B點(diǎn)對(duì)應(yīng)的數(shù)為100.
(1)請(qǐng)寫(xiě)出與A,B兩點(diǎn)距離相等的點(diǎn)M所對(duì)應(yīng)的數(shù) .
(2)現(xiàn)有一只電子螞蟻P從B點(diǎn)出發(fā),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度向右運(yùn)動(dòng),x秒后兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,請(qǐng)列方程求出x,并指出點(diǎn)C表示的數(shù).
(3)若當(dāng)電子螞蟻P從B點(diǎn)出發(fā)時(shí),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度也向左運(yùn)動(dòng),y秒后兩只電子螞蟻在數(shù)軸上的D點(diǎn)相遇,請(qǐng)列方程求出y并指出點(diǎn)D表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)三角板ABC,DEF按如圖所示的位置擺放,點(diǎn)B與點(diǎn)D重合,邊AB與邊DE在同一條直線(xiàn)上(假設(shè)圖形中所有的點(diǎn)、線(xiàn)都在同一平面內(nèi)),其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=4 cm.現(xiàn)固定三角板DEF,將三角板ABC沿射線(xiàn)DE方向平移,當(dāng)點(diǎn)C落在邊EF上時(shí)停止運(yùn)動(dòng).設(shè)三角板平移的距離為(cm),兩個(gè)三角板重疊部分的面積為 (cm2).
(1)當(dāng)點(diǎn)C落在邊EF上時(shí),=________cm;
(2)求關(guān)于的函數(shù)表達(dá)式,并寫(xiě)出自變量的取值范圍;
(3)設(shè)邊BC的中點(diǎn)為點(diǎn)M,邊DF的中點(diǎn)為點(diǎn)N,直接寫(xiě)出在三角板平移過(guò)程中,點(diǎn)M與點(diǎn)N之間距離的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com