【題目】如圖,在等邊三角形ABCACBC邊上各取一點(diǎn)P,Q,使AP=CQ,AQBP相交于點(diǎn)O.若BO=6,PO=2,則AP的長,AO的長分別為__________

【答案】4,

【解析】

先通過條件證明△ABP≌△ACQ,得到∠ABP=CAQ,可證明△APO∽△BPA,得出,則AP2=OPBP,可求出AP,設(shè)OA=x,則AB=2x,在RtABE中,由AE2+BE2=AB2,得出x的值即可得解.

解:解:∵△ABC是等邊三角形
∴∠BAP=ACQ=ABQ=60°,AB=AC=BC
∵在△ABP和△ACQ

,
∴△ABP≌△ACQ SAS),
∴∠ABP=CAQ
∵∠APO=BPA,
∴△APO∽△BPA,

AP2=OPBP,
BO=6,PO=2,

BP=8,
AP2=2×8=16,
AP=4,
∵∠BAC=60°
∴∠BAQ+CAQ=60°,
∴∠BAQ+ABP=60°
∵∠BOQ=BAQ+ABP,
∴∠BOQ=60°,
過點(diǎn)BBEOQ于點(diǎn)E,

∴∠OBE=30°,
OB=6,
OE=3,BE=3,
,

設(shè)OA=x,則AB=2x,
RtABE中,AE2+BE2=AB2,
(x+3)2+(3)2(2x)2,
解得:x=x=1-(舍去),
AO=1+
故答案為:4,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=EDF=90°,△EDF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q

1)如圖,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;

2)如圖,當(dāng)點(diǎn)Q在線段CA的延長線上時,求證:△BPE∽△CEQ;

3)在(2)的條件下,BP=2CQ=9,則BC的長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,蘭蘭站在河岸上的G點(diǎn),看見河里有一只小船沿垂直于岸邊的方向劃過來,此時,測得小船C的俯角是∠FDC30°,若蘭蘭的眼睛與地面的距離是1.5米,BG1米,BG平行于AC所在的直線,迎水坡的坡度i43,坡高BE8米,求小船C到岸邊的距離CA的長.(參考數(shù)據(jù):≈1.7,結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,上一點(diǎn),是半徑上一動點(diǎn)(不與重合),過點(diǎn)作射線,分別交弦,兩點(diǎn),過點(diǎn)的切線交射線于點(diǎn)

1)求證:

2)當(dāng)的中點(diǎn)時,

①若,判斷以為頂點(diǎn)的四邊形是什么特殊四邊形,并說明理由;

②若,且,則_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天然生物制藥公司投資制造某藥品,先期投入了部分資金.企劃部門根據(jù)以往經(jīng)驗(yàn)發(fā)現(xiàn),生產(chǎn)銷售中所獲總利潤隨天數(shù)(可以取分?jǐn)?shù))的變化圖象如下,當(dāng)總利潤到達(dá)峰值后會逐漸下降,當(dāng)利潤下降到萬元時即為止損點(diǎn),則停止生產(chǎn)

1)設(shè),求出最大利潤是多少?

2)在(1)的條件下,經(jīng)公司研究發(fā)現(xiàn)如果添加名工人,在工資成本增加的情況下,總利潤關(guān)系式變?yōu)?/span>,請研究添加名工人后總利潤的最大值,并給出總利潤最大的方案中的值及生產(chǎn)天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,折疊矩形,具體操作:①點(diǎn)邊上一點(diǎn)(不與、重合),把沿所在的直線折疊,點(diǎn)的對稱點(diǎn)為點(diǎn);②過點(diǎn)對折,折痕所在的直線交于點(diǎn)點(diǎn)的對稱點(diǎn)為點(diǎn)

1)求證:

2)若,

①點(diǎn)在移動的過程中,求的最大值.

②如圖2,若點(diǎn)恰在直線上,連接,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù)y=ax-1)(x-a),其中a是常數(shù),且a0

1)當(dāng)a=2時,試判斷點(diǎn)(-,-5)是否在該函數(shù)圖象上.

2)若函數(shù)的圖象經(jīng)過點(diǎn)(1,-4),求該函數(shù)的表達(dá)式.

3)當(dāng)-1≤x+1時,yx的增大而減小,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),點(diǎn)A的橫坐標(biāo)是2,點(diǎn)B的縱坐標(biāo)是-2.

(1)求一次函數(shù)的解析式;

(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的紙箱里有分別標(biāo)有漢字”“”“”“的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先搖勻再摸球.

1)若從中任取一個球,求摸出球上的漢字剛好是字的概率;

2)小紅從中任取球,不放回,再從中任取一球,請用樹狀圖或列表法,求小紅取出的兩個球上的漢字恰好能組成愛國祖國的概率.

查看答案和解析>>

同步練習(xí)冊答案