【題目】如圖所示,小明在大樓30米高(即PH=30米)的窗口P處進(jìn)行觀測(cè),測(cè)得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i(即tanABC)為1:,點(diǎn)P、H、BC、A在同一個(gè)平面上.點(diǎn)H、B、C在同一條直線上,且PHHC

(1)山坡坡角(即∠ABC)的度數(shù)等于 度;

(2)求山坡AB兩點(diǎn)間的距離(結(jié)果精確到0.1米).

(參考數(shù)據(jù):≈1.414,≈1.732)

【答案】(130234.6

【解析】試題分析:(1)根據(jù)俯角以及坡度的定義即可求解;

(2)在直角PHB中,根據(jù)三角函數(shù)即可求得PB的長(zhǎng),然后在直角PBA中利用三角函數(shù)即可求解.

試題解析:(1)∵山坡的坡度i(即tanABC)為1:

tanABC=,∴∠ABC=30°;∵從P點(diǎn)望山腳B處的俯角60°,

∴∠PBH=60°,∴∠ABP=180°﹣30°﹣60°=90°故答案為:90.

(2)由題意得:∠PBH=60°,∵∠ABC=30°,∴∠ABP=90°,∴△PAB為直角三角形,

又∵∠APB=45°,在直角PHB中,PB=PH÷sinPBH=45÷=30(m).

在直角PBA中,AB=PBtanBPA=30≈52.0(m).

A、B兩點(diǎn)間的距離約為52.0米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)直角三角形的一條直角邊長(zhǎng)是7cm,另一條直角邊比斜邊短1cm,則斜邊長(zhǎng)為(
A.18cm
B.20cm
C.24cm
D.25cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象y1=kx+b與反比例函數(shù)的圖象交于點(diǎn)A(1,5)和點(diǎn)B(m,1).

(1)求m的值和反比例函數(shù)的解析式;

(2)當(dāng)x>0時(shí),根據(jù)圖象直接寫(xiě)出不等式≥kx+b的解集;

(3)若經(jīng)過(guò)點(diǎn)B的拋物線的頂點(diǎn)為A,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ABC是等腰直角三角形,ACB=90°,直角邊與正方形DEFG的邊長(zhǎng)均為2,且AC與DE在同一直線上,開(kāi)始時(shí)點(diǎn)C與點(diǎn)D重合,讓△ABC沿這條直線向右平移,直到點(diǎn)A與點(diǎn)E重合為止.設(shè)CD的長(zhǎng)為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤(rùn)不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若順次連接四邊形ABCD各邊的中點(diǎn)所得四邊形是矩形,則四邊形ABCD一定滿足(
A.對(duì)角線相等
B.對(duì)角線互相平分
C.對(duì)角線互相垂直
D.對(duì)角線相等且相互平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=(x22上任意兩點(diǎn)Ax1,y1)與Bx2,y2),若x2x12,則y1y2的大小關(guān)系是( 。

A.y1y2B.y1y2C.y1y2D.y1y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,M、N是對(duì)角線BD上的兩點(diǎn),且BM=DN. 求證:四邊形AMCN是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:a2﹣b2=

查看答案和解析>>

同步練習(xí)冊(cè)答案