【題目】如圖,點A、B的坐標(biāo)分別為(4,0)、(0,8),點C是線段OB上一動點,點E在x軸正半軸上,四邊形OEDC是矩形,且OE=2OC.設(shè)OE=t(t>0),矩形OEDC與△AOB重合部分的面積為S.
根據(jù)上述條件,回答下列問題:
(1)當(dāng)矩形OEDC的頂點D在直線AB上時,求t的值;
(2)當(dāng)t=4時,求S的值;
(3)直接寫出S與t的函數(shù)關(guān)系式(不必寫出解題過程);
(4)若S=12,則t= .
【答案】
(1)
解:由題意可得∠BCD=∠BOA=90°,∠CBD=∠OBA,
∴△BCD∽△BOA,
∴
而 ,
則 ,
解得 ,
∴當(dāng)點D在直線AB上時, .
(2)
解:當(dāng)t=4時,點E與A重合,設(shè)CD與AB交于點F,
則由△CBF∽△OBA得 ,
即 ,
解得CF=3,
∴ .
(3)
解:①當(dāng) 時,
②當(dāng) 時,
③當(dāng)4<t≤16時,
分析:①當(dāng) 時,如圖(1),
②當(dāng) 時,如圖(2),
∵A(4,0),B(0,8),∴直線AB的解析式為y=﹣2x+8,
∴ ,
∴ ,
∴ =
③當(dāng)4<t≤16時,如圖(3)
∵CD∥OA,∴△BCF∽△BOA,∴ ,∴ ,∴ ,
∴
(4)8
【解析】分析:由題意可知把S=12代入 中, ,
整理,得t2﹣32t+192=0,
解得t1=8,t2=24>16(舍去),
∴當(dāng)S=12時,t=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ECF=90°,線段 AB 的端點分別在 CE 和 CF 上,BD 平分∠CBA,并與∠CAB 的外角平分線 AG 所在的直線交于一點 D.
(1)∠D 與∠C 有怎樣的數(shù)量關(guān)系?(直接寫出關(guān)系及大小)
(2)點 A 在射線 CE 上運動,(不與點 C 重合)時,其它條件不變,(1)中結(jié)論還成立嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB∥CD,點E為AB,CD之外任意一點.
(1)如圖1,探究∠BED與∠B,∠D的數(shù)量關(guān)系,并說明理由;
(2)如圖2,探究∠CDE與∠B,∠E的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD為△ABC的角平分線請按如下要求操作與解答:
(1)過點D畫DE∥BC交AB于點E.若∠A=68°,∠AED=42°,求△BCD各內(nèi)角的度數(shù);
(2)畫△ABC的角平分線CF交BD于點M,若∠A=60°,請找出圖中所有與∠A相等的角,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由同樣大小的小圓圈按一定規(guī)律所組成的,其中第①個圖形中一共有6個小圓圈,第②個圖形中一共有9個小圓圈,第③個圖形中一共有12個小圓圈,…,按此規(guī)律排列,則第⑩個圖形中小圓圈的個數(shù)為( )
A. 24 B. 27 C. 30 D. 33
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD,∠ABC=45°,∠C=∠D=90°,含30°角(∠P=30°)的直角三角板PMN(如圖)在圖中平移,直角邊MN⊥BC,頂點M、N分別在邊AD、BC上,延長NM到點Q,使QM=PB.若BC=10,CD=3,則當(dāng)點M從點A平移到點D的過程中,點Q的運動路徑長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時,求∠DEF的度數(shù);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com