【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊的綠化費用為0.4萬元,乙隊為0.25萬元,要使這 次的綠化總費用不超過8萬元,至少應(yīng)安排甲隊工作多少天?
【答案】
(1)解:設(shè)乙工程隊每天能完成綠化的面積是x(m2),根據(jù)題意得:
﹣ =4,
解得:x=50,
經(jīng)檢驗x=50是原方程的解,
則甲工程隊每天能完成綠化的面積是50×2=100(m2),
答:甲、乙兩工程隊每天能完成綠化的面積分別是100m2、50m2;
(2)解:設(shè)應(yīng)安排甲隊工作y天,根據(jù)題意得:
0.4y+ ×0.25≤8,
解得:y≥10,
答:至少應(yīng)安排甲隊工作10天.
【解析】(1)設(shè)乙工程隊每天能完成綠化的面積是x(m2),根據(jù)在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天,列出方程,求解即可;(2)設(shè)應(yīng)安排甲隊工作y天,根據(jù)這次的綠化總費用不超過8萬元,列出不等式,求解即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時,仍有EF=BE+FD.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=kx+2與x軸交于點A(m,0)(m>4),與y軸交于點B,拋物線y2=ax2﹣4ax+c(a<0)經(jīng)過A,B兩點.P為線段AB上一點,過點P作PQ∥y軸交拋物線于點Q.
(1)當(dāng)m=5時,
①求拋物線的關(guān)系式;
②設(shè)點P的橫坐標(biāo)為x,用含x的代數(shù)式表示PQ的長,并求當(dāng)x為何值時,PQ=;
(2)若PQ長的最大值為16,試討論關(guān)于x的一元二次方程ax2﹣4ax﹣kx=h的解的個數(shù)與h的取值范圍的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是( 。
A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+x+3的圖象與x軸交于點A、B,與y軸交于點C,點D在該拋物線上,且點D的橫坐標(biāo)為2,連接BC、BD.設(shè)∠OCB=α,∠DBC=β,則cos(α-β)的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若A=10a2+3b2﹣5a+5,B=a2+3b2﹣8a+5,則A﹣B的值與﹣9a3b2的公因式為( 。
A.a
B.﹣3
C.9a3b2
D.3a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,AD=8,AE平分∠BAD交BC于點E,DF平分∠ADC交BC于點F,且EF=2,則AB的長為( )
A.3
B.5
C.2或3
D.3或5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com