【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時,仍有EF=BE+FD.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)

【答案】【發(fā)現(xiàn)證明】證明見解析;【類比引申】∠BAD=2∠EAF;【探究應(yīng)用】1092米.

【解析】【發(fā)現(xiàn)證明】根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADG≌△ABE,則GF=BE+DF,只要再證明△AFG≌△AFE即可.

【類比引申】延長CB至M,使BM=DF,連接AM,證△ADF≌△ABM,證△FAE≌△MAE,即可得出答案;

【探究應(yīng)用】利用等邊三角形的判定與性質(zhì)得到△ABE是等邊三角形,則BE=AB=80.把△ABE繞點A逆時針旋轉(zhuǎn)150°至△ADG,根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADG≌△ABE,則GF=BE+DF,只要再證明△AFG≌△AFE即可得出EF=BE+FD.

解:如圖(1),

∵△ADG≌△ABE,

∴AG=AE,∠DAG=∠BAE,DG=BE,

又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,

∴∠GAF=∠FAE,

在△GAF和△FAE中,

AG=AE,∠GAF=∠FAE,AF=AF,

∴△AFG≌△AFE(SAS).

∴GF=EF.

又∵DG=BE,

∴GF=BE+DF,

∴BE+DF=EF.

【類比引申】∠BAD=2∠EAF.

理由如下:如圖(2),延長CB至M,使BM=DF,連接AM,

∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,

∴∠D=∠ABM,

在△ABM和△ADF中,

AB=AD,∠ABM=∠D,BM=DF,

∴△ABM≌△ADF(SAS),

∴AF=AM,∠DAF=∠BAM,

∵∠BAD=2∠EAF,

∴∠DAF+∠BAE=∠EAF,

∴∠EAB+∠BAM=∠EAM=∠EAF,

在△FAE和△MAE中,

AE=AE,∠FAE=∠MAE,AF=AM,

∴△FAE≌△MAE(SAS),

∴EF=EM=BE+BM=BE+DF,

即EF=BE+DF.

故答案是:∠BAD=2∠EAF.

【探究應(yīng)用】如圖3,把△ABE繞點A逆時針旋轉(zhuǎn)150°至△ADG,連接AF.

∵∠BAD=150°,∠DAE=90°,

∴∠BAE=60°.

又∵∠B=60°,

∴△ABE是等邊三角形,

∴BE=AB=80

根據(jù)旋轉(zhuǎn)的性質(zhì)得到:∠ADG=∠B=60°,

又∵∠ADF=120°,

∴∠GDF=180°,即點G在CD的延長線上.

易得,△ADG≌△ABE,

∴AG=AE,∠DAG=∠BAE,DG=BE,

又∵∠EAG=∠BAD=150°,

∴∠GAF=∠FAE,

在△GAF和△FAE中,

AG=AE,∠GAF=∠FAE,AF=AF,

∴△AFG≌△AFE(SAS).

∴GF=EF.

又∵DG=BE,

∴GF=BE+DF,

∴EF=BE+DF=80+40(﹣1)≈109.2(米),即這條道路EF的長約為109.2

“點睛”此題主要考查了四邊形綜合題,關(guān)鍵是正確畫出圖形,證明△AFG≌△AEF.此題是一道綜合題,難度較大,題目所給例題的思路,為解決此題做了較好的鋪墊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件中,是隨機事件的是( 。

A.20191月有31

B.201947日豐都廟會開幕式當(dāng)天天氣晴朗

C.踢飛在空中的足球會下落

D.早上的太陽從東方升起

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與坐標(biāo)軸交于、兩點,與反比例函數(shù)在第一象限內(nèi)的圖像交于點,反比例函數(shù)圖像上有一點,連接,已知: .

(1)求一次函數(shù)和反比例函數(shù)的解析式.

(2)求△AOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算中,能用平方差公式計算的是(

A. (﹣a+b)(abB. ab)(﹣b+a

C. 3ab)(3b+aD. b+2a)(2ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,經(jīng)過點A(-4,4)的拋物線y=ax2+bx+c與x軸相交于點B(-3,0)及原點O.

(1)求拋物線的解析式;

(2)如圖1,過點A作AH⊥x軸,垂足為H,平行于y軸的直線交線段AO于點Q,交拋物線于點P,當(dāng)四邊形AHPQ為平行四邊形時,求∠AOP的度數(shù);

(3)如圖2,若點C在拋物線上,且∠CAO=∠BAO,試探究:在(2)的條件下,是否存在點G,使得△GOP∽△COA?若存在,請求出所有滿足條件的點G坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某初一年級有500名同學(xué),將他們的身高(單位:cm)數(shù)據(jù)繪制成頻率分布直方圖(如圖),若要從身高在, , 三組內(nèi)的學(xué)生中,用分層抽樣的方法選取30人參加一項活動,則從身高在內(nèi)的學(xué)生中選取的人數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形紙片ABCD按如圖所示的方式折疊,AE,EF為折痕,∠BAE=30°,AB= ,折疊后,點C落在AD邊上的C1處,并且點B落在EC1邊上的B1處.則BC的長為(

A.
B.2
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先看到閃電,后聽到雷聲,那是因為在空氣中光的傳播速度比聲音快.科學(xué)家發(fā)現(xiàn),光在空氣里的傳播速度約為3×108/秒,而聲音在空氣里的傳播速度大約為3×102/秒.在空氣中光的速度是聲速的_____倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點Pa,b)在第三象限,則點Q(﹣a,b)一定在( 。

A. 第一象限B. 第二象限C. 第三象限D. 第四象限

查看答案和解析>>

同步練習(xí)冊答案