精英家教網 > 初中數學 > 題目詳情

(8分)如圖,一次函數的圖象與反比例函數圖象交于A(-2,1)、B(1,n)兩點。

【小題1】(1)求反比例函數和一次函數的解析式;
【小題2】(2)根據圖象寫出使一次函數的值大于反比例函數的值的x的取值范圍。


【小題1】解:(1) 由題意得  m="-2" n="-2" …………………. ……2分     
  
解得                        3分
所以一次函數解析式為  反比例函數 .. 
【小題2】(2) 由圖像可知 x 或 時一次函數的值大于反比例函數的值的x的取值范圍。        

解析

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知反比例函數y=
12x
的圖象和一次函數y=kx-7的圖象都經過點P(m,2).
(1)求這個一次函數的解析式;
(2)如果等腰梯形ABCD的頂點A、B在這個一次函數的圖象上,頂點C、D在這個反比例函數的圖象上,兩底AD、BC與y軸平行,且A和B的橫坐標分別為a、b(b>a>0),求代數式ab的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,一次函數的圖象與反比例函數y1= –  ( x<0)的圖象相交于A點,與y軸、x軸分別相交于BC兩點,且C(2,0).當x<–1時,一次函數值大于反比例函數的值,當x>–1時,一次函數值小于反比例函數值.

(1)    求一次函數的解析式;

(2)    設函數y2=  (x>0)的圖象與y1= –  (x<0)的圖象關于y軸對稱.在y2=  (x>0)的圖象上取一點PP點的橫坐標大于2),過PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,一次函數的圖象與反比例函數(x<0)的圖象相交于A點,與y軸、x軸分別相交于B、C兩點,且C(2,0),當x<-1時,一次函數值大于反比例函數值,當x>-1時,一次函數值小于反比例函數值.

(1)求一次函數的解析式;

(2)設函數(x>0)的圖象與(x<0)的圖象關于y軸對稱,在(x>0)的圖象上取一點P(P點的橫坐標大于2),過P點作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點的坐標.

解答:

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,一次函數的圖象與反比例函數y1= – ( x<0)的圖象相交于A點,與y軸、x軸分別相交于B、C兩點,且C(2,0).當x<–1時,一次函數值大于反比例函數的值,當x>–1時,一次函數值小于反比例函數值.

(1)   求一次函數的解析式;

(2)   設函數y2= (x>0)的圖象與y1= – (x<0)的圖象關于y軸對稱.在y2= (x>0)的圖象上取一點PP點的橫坐標大于2),過PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點的坐標.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,一次函數的圖象與反比例函數y1= – ( x<0)的圖象相交于A點,與y軸、x軸分別相交于BC兩點,且C(2,0).當x<–1時,一次函數值大于反比例函數的值,當x>–1時,一次函數值小于反比例函數值.

(1)   求一次函數的解析式;

(2)   設函數y2= (x>0)的圖象與y1= – (x<0)的圖象關于y軸對稱.在y2= (x>0)的圖象上取一點PP點的橫坐標大于2),過PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點的坐標.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案