【題目】如圖,在RtABC中,∠BAC=90°,且BA=9,AC=12,點(diǎn)D是斜邊BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)D分別作DEAB于點(diǎn)E,DFAC于點(diǎn)F,點(diǎn)G為四邊形DEAF對角線交點(diǎn),則線段GF的最小值為_______.

【答案】

【解析】

由勾股定理求出BC的長,再證明四邊形DEAF是矩形,可得EF=AD,根據(jù)垂線段最短和三角形面積即可解決問題.

解:∵∠BAC=90°,且BA=9,AC=12,
∴在RtABC中,利用勾股定理得:BC===15,
DEAB,DFAC,∠BAC=90°
∴∠DEA=DFA=BAC=90°,
∴四邊形DEAF是矩形,
EF=ADGF=EF
∴當(dāng)ADBC時(shí),AD的值最小,
此時(shí),ABC的面積=AB×AC=BC×AD,
AD===
EF=AD=,因此EF的最小值為;

又∵GF=EF

GF=×=
故線段GF的最小值為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點(diǎn)A2 019的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,,點(diǎn)邊的中點(diǎn),點(diǎn)邊上一動(dòng)點(diǎn)(不與點(diǎn)重合),延長交射線于點(diǎn),連接

1)求證:四邊形是平行四邊形;

2)填空:

①當(dāng)的值為_______時(shí),四邊形是矩形;

②當(dāng)的值為______時(shí),四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠BAC=60° ,B=80° ,DE垂直平分ACBC于點(diǎn)D,AC于點(diǎn)E.

(1)求∠BAD的度數(shù)

(2)AB=10,BC=12,ABD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的頂點(diǎn)都在方格線的交點(diǎn)(格點(diǎn))上.

(1)將ABC繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)90°得到A′B′C′,請?jiān)趫D中畫出A′B′C′.

(2)將ABC向上平移1個(gè)單位,再向右平移5個(gè)單位得到A″B″C″,請?jiān)趫D中畫出A″B″C″.

(3)若將ABC繞原點(diǎn)O旋轉(zhuǎn)180°,A的對應(yīng)點(diǎn)A1的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】瀘西某著名風(fēng)景旅游景點(diǎn)于5 月1日前后相繼開放,為了更好的吸引游客前去游覽,某景點(diǎn)給出團(tuán)體購買公園門票票價(jià)如下:

購票人數(shù)

1~50

51~100

100人以上

每人門票(元)

13元

11元

9元

今有甲、乙兩個(gè)旅行團(tuán),已知甲團(tuán)人數(shù)少于50人,乙團(tuán)人數(shù)不超過100人.若分別購票,兩團(tuán)共計(jì)應(yīng)付門票費(fèi)1392元,若合在一起作為一個(gè)團(tuán)體購票,總計(jì)應(yīng)付門票費(fèi)1080元.

(1)請你判斷乙團(tuán)的人數(shù)是否也少于50人.

(2)求甲、乙兩旅行團(tuán)各有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店出售、兩種文具.文具每套元,文具每套元,該店開展促銷活動(dòng),向客戶提供兩種優(yōu)惠方案:

①買一套文具送一套文具.

文具和文具都按定價(jià)的付款.

現(xiàn)某客戶要到該店購買文具套,文具套(

)若該客戶按方案①購買需付款____________________元(用含的代數(shù)式表示);若該客戶按方案②購買需付款____________________元(用含的代數(shù)式表示)

)當(dāng)時(shí),通過計(jì)算說明按哪種方案購買較為合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形 ABCD 中,BAD,BCD=180°-α,BD 平分ABC

1)如圖,若α=90°,根據(jù)教材中一個(gè)重要性質(zhì)直接可得 DA=CD,這個(gè)性質(zhì)是

2)問題解決:如圖,求證:AD=CD;

3)問題拓展:如圖,在等腰ABC 中,BAC=100°,BD 平分ABC,求證:BD+AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師請同學(xué)思考如下問題:如圖①,我們把一個(gè)四邊形的四邊中點(diǎn)依次連接起來得到的四邊形是平行四邊形嗎?

小敏在思考問題,有如下思路:連接

結(jié)合小敏的思路作答.

1)若只改變圖①中四邊形的形狀(如圖②),則四邊形還是平行四邊形嗎?說明理由;

(參考小敏思考問題方法)

2)如圖②,在(1)的條件下,若連接

①當(dāng)滿足什么條件時(shí),四邊形是矩形,寫出結(jié)論并證明;

②當(dāng)滿足____時(shí),四邊形是正方形.

查看答案和解析>>

同步練習(xí)冊答案