(2009•福州質(zhì)檢)已知直線y=x與函數(shù)y=(x>0,k>0)的圖象交于點(diǎn)A,以坐標(biāo)原點(diǎn)O為圓心,OA長(zhǎng)為半徑畫(huà)弧,交x軸正半軸于點(diǎn)C,直線AB交x軸負(fù)半軸于B點(diǎn),∠ABC=30°.
(1)畫(huà)出滿(mǎn)足題意的示意圖;
(2)請(qǐng)用含π的代數(shù)式表示的值;(其中,S為△AOB面積,T為扇形AOC面積)
(3)設(shè)k取k1時(shí),△AOB面積為S1,扇形AOC面積為T(mén)1,k取k2時(shí),△AOB面積為S2,扇形AOC面積為T(mén)2…求-+-+…-+的值.
【答案】分析:(1)首先確定點(diǎn)C的位置,再進(jìn)一步畫(huà)出30度的角確定點(diǎn)B的位置;
(2)首先根據(jù)直線和雙曲線的解析式可以求得交點(diǎn)A的坐標(biāo),作AD⊥x軸于D,則得到等腰直角三角形AOD.根據(jù)勾股定理求得OA的長(zhǎng),即可表示出扇形的面積;要求OB的長(zhǎng),根據(jù)30度的直角三角形的性質(zhì)求得BD的長(zhǎng),從而求得OB的長(zhǎng),即可表示出三角形的面積.最后求得比值;
(3)根據(jù)(2)的結(jié)論,不難看到它們之間的面積比是一個(gè)定值,利用抵消的方法即可求解.
解答:解:(1)畫(huà)圖正確(3分)


(2)由題意可得A點(diǎn)坐標(biāo)為()過(guò)A作AD⊥x軸于D,(1分)
BO=-,AD=,OA=(1分)
∴△AOB的面積S=k(1分)
扇形AOC面積T=k(1分)
==
因此無(wú)論k值如何變化,的值都不變,==;(3分)

(3)-+-+-+==
點(diǎn)評(píng):注意:直線y=x即是第一、三象限的角平分線,可以出現(xiàn)等腰直角三角形.掌握等腰直角三角形和30度的直角三角形的性質(zhì),熟悉三角形和扇形的面積公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省福州市初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•福州質(zhì)檢)如圖,三角形ADC是由等腰直角三角形EOG經(jīng)過(guò)位似變換得到的,變換中心在x軸的正半軸,已知EO=1,D點(diǎn)坐標(biāo)為D(2,0),位似比為1:2,則兩個(gè)三角形的位似中心P點(diǎn)的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省福州市初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•福州質(zhì)檢)如圖,將矩形EFBC一條對(duì)角線FC向兩端延伸,使AF=DC,連接AB、ED,
求證:△AFB≌△DCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省福州市初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•福州質(zhì)檢)(1)由(,tan45°,(+2),(-2)四個(gè)數(shù)中任選三個(gè)組成一個(gè)算式,并計(jì)算結(jié)果;
(2)已知x=-,y=-,請(qǐng)計(jì)算x+y的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省福州市初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•福州質(zhì)檢)如圖,已知BD是三角形ABC外接圓直徑,連接CD,若DC=12,BD=13,則cosA的值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案