【題目】如圖,已知在平面直角坐標系中,點P從原點O以每秒1個單位速度沿x軸正方向運動,運動時間為t秒,作點P關于直線y=tx的對稱點Q,過點Q作x軸的垂線,垂足為點A.
(1)當t=2時,求AO的長.
(2)當t=3時,求AQ的長.
(3)在點P的運動過程中,用含t的代數(shù)式表示線段AP的長.
【答案】(1) ;(2) ;(3) .
【解析】
過P作PD⊥x軸,交直線y=tx于D,連接OQ,
(1)證△OPD∽△QAP,得,AP=2AQ,設AQ=a,
由勾股定理得:OQ2=AQ2+AO2,;
②設AQ=a,Rt△AQO中,由勾股定理得:OQ2=AQ2+AO2,;
(3)同理OP=t,PD=t2,△OPD∽△QAP,故,AP=tAQ,在Rt△AQO中,OQ=OP=t,由勾股定理得:OQ2=AQ2+AO2,.
解:過P作PD⊥x軸,交直線y=tx于D,連接OQ,
(1)當t=2時,y=PD=2x=4,
∵∠BDP+∠DPB=∠DPB+∠APQ=90°,
∴∠BDP=∠APQ,
∴△OPD∽△QAP,
∴,
∴AP=2AQ,
設AQ=a,
Rt△AQO中,OQ=OP=2,
由勾股定理得:OQ2=AQ2+AO2,
∴,
5a2+4a﹣12=0,
a1=﹣2(舍),a2=,
∴AO=;
②當t=3時,OP=3,PD=9,
設AQ=a,
Rt△AQO中,OQ=OP=3,
由勾股定理得:OQ2=AQ2+AO2,
,
5a2+3a﹣36=0,
(a+3)(5a﹣12)=0,
a1=﹣3(舍),a2=,
∴AQ=AP=(+3)=;
(3)同理OP=t,PD=t2,
∴△OPD∽△QAP,
∴,
∴AP=tAQ,
Rt△AQO中,OQ=OP=t,
由勾股定理得:OQ2=AQ2+AO2,
∴,
AP=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩村在一條小河的同一側,要在河邊建一水廠向兩村供水.
⑴.若要使自來水廠到兩村的距離相等,廠址P應選在哪個位置?
⑵.若要使自來水廠到兩村的輸水管用料最省,廠址Q應選在哪個位置?請將上述兩種情況下的自來水廠廠址標出,并保留作圖痕跡.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關系,如圖是y與x的函數(shù)關系圖象.
(1)求y與x的函數(shù)解析式(也稱關系式)
(2)設該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】勾股定理是一條古老的數(shù)學定理,它有很多種證明方法,我國漢代數(shù)學家趙爽根據(jù)弦圖,利用面積進行了證明.著名數(shù)學家華羅庚提出把“數(shù)形關系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進行第一次“談話”的語言.
請根據(jù)圖1中直角三角形敘述勾股定理.
以圖1中的直角三角形為基礎,可以構造出以a,b為底,以a+b為高的直角梯形(如圖2).請你利用圖2,驗證勾股定理;
利用圖2中的直角梯形,我們可以證明.其證明步驟如下:
∵BC=a+b,AD=_____;
又∵在直角梯形ABCD中有BC_____AD(填大小關系),即_____.
∴.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是正方形,△ABC的頂點均在格點上,建立平面直角坐標系.
(1)以原點O為對稱中心,畫出與△ABC關于原點O對稱的△A1B1C1 , A1的坐標是
(2)將原來的△ABC繞著點(﹣2,1)順時針旋轉90°得到△A2B2C2 , 試在圖上畫出△A2B2C2的圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,
(1)求證:AB=AC;
(2)已知S△ABC=40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止. 設點M運動的時間為t(秒),
①若△DMN的邊與BC平行,求t的值;
②若點E是邊AC的中點,問在點M運動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com