【題目】如圖,⊙O半徑為1,AB是⊙O的直徑,C是⊙O上一點(diǎn),連接AC,⊙O外的一點(diǎn)D在直線AB上,若AC=,OB=BD.

(1)求證:CD是⊙O的切線;

(2)求陰影部分的面積.(結(jié)果保留π)

【答案】(1)見解析;(2)

【解析】

(1)連接OC,則得出∠COD=2CAO=2D=60°,可求得∠OCD=90°,可得出結(jié)論;

(2)可利用OCD的面積扇形BOC的面積求得陰影部分的面積.

(1)連接OC,CB,則∠COD=2CAD,

∵⊙O半徑為1,AC=,

AB=2,BC=1,

∴∠CAD=30°,

∴∠COD=60°,

OB=BD,

BC=BD=OB=1,

∴∠CBO=60°,

∴∠DCB=BDC=30°,

∴∠OCD=180°﹣60°﹣30°=90°,

OCCD,

CD是⊙O的切線;

(2)在RtOCD中,OC=1,OD=2,由勾股定理可求得CD=

所以SOCD=OCCD=×1×=,

因?yàn)椤?/span>COD=60°,

所以S扇形COB=,

所以S陰影=SOCD﹣S扇形COB=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的外接圓,,是劣弧上的點(diǎn)(不與點(diǎn)重合),延長

求證:的延長線平分

,邊上的高為,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD的兩邊AB,AD的長是關(guān)于x的方程x2mx0的兩個(gè)實(shí)數(shù)根.

(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長;

(2)AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知正方形的面積為,點(diǎn)在函數(shù)的圖象上,點(diǎn)是函數(shù)的圖象上動(dòng)點(diǎn),過點(diǎn)分別作軸、軸的垂線,垂足分別為、,若設(shè)矩形和正方形不重合的兩部分的面積和為

點(diǎn)坐標(biāo)和的值;

寫出關(guān)于的函數(shù)關(guān)系和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 4 4 的正方形網(wǎng)格中,有 5 個(gè)黑色小正方形.

1)請(qǐng)你移動(dòng)一個(gè)黑色小正方形,使移動(dòng)后所形成的4 4 的正方形網(wǎng)格圖形是軸對(duì)稱圖形.如:將 8 號(hào)小正方形移至 14 號(hào);你的另一種做法是將 號(hào)小正方形移至 號(hào)(填寫標(biāo)號(hào)即可);

2)請(qǐng)你移動(dòng) 2 個(gè)小正方形,使移動(dòng)后所形成的圖形是軸對(duì)稱圖形.你的一種做法是將 號(hào)小正方形移至 號(hào)、將 號(hào)小正方形移至 號(hào)(填寫標(biāo)號(hào)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O在線段AB上,(不與端點(diǎn)A、B重合),以點(diǎn)O為圓心,OA的長為半徑畫弧,線段BP與這條弧相切與點(diǎn)P,直線CD垂直平分PB,交PB于點(diǎn)C,交AB于點(diǎn)D,在射線DC上截取DE,使DE=DB。已知AB=6,設(shè)OA=r

(1)求證:OPED;

(2)當(dāng)∠ABP=30°時(shí),求扇形AOP的面積,并證明四邊形PDBE是菱形;

(3)過點(diǎn)OOFDE于點(diǎn)F,如圖所示,線段EF的長度是否隨r的變化而變化?若不變,直接寫出EF的值;若變化,直接寫出EFr的關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要建一個(gè)如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),

(1)求圍欄的長和寬;

(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 , ,以點(diǎn)為頂點(diǎn)、為腰在第三象限作等腰

)求點(diǎn)的坐標(biāo).

)如圖 軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)沿軸負(fù)半軸向下運(yùn)動(dòng)時(shí),以為頂點(diǎn), 為腰作等腰,過軸于點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)畫出△ABC和△A1B1C1關(guān)于原點(diǎn)O對(duì)稱,畫出△A1B1C1,并寫出△A1B1C1的各頂點(diǎn)的坐標(biāo);

(2)將△ABC繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°得到的△A2B2C2,畫出△A2B2C2,并寫出△A2B2C2的各頂點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案