(2013•涼山州)在同一平面直角坐標(biāo)系中有5個點(diǎn):A(1,1),B(-3,-1),C(-3,1),D(-2,-2),E(0,-3).
(1)畫出△ABC的外接圓⊙P,并指出點(diǎn)D與⊙P的位置關(guān)系;
(2)若直線l經(jīng)過點(diǎn)D(-2,-2),E(0,-3),判斷直線l與⊙P的位置關(guān)系.
分析:(1)在直角坐標(biāo)系內(nèi)描出各點(diǎn),畫出△ABC的外接圓,并指出點(diǎn)D與⊙P的位置關(guān)系即可;
(2)連接PE,用待定系數(shù)法求出直線PD與PE的位置關(guān)系即可.
解答:解:(1)如圖所示:
△ABC外接圓的圓心為(-1,0),點(diǎn)D在⊙P上;

(2)方法一:連接PD,
設(shè)過點(diǎn)P、D的直線解析式為y=kx+b,
∵P(-1,0)、D(-2,-2),
0=-k+b
-2=-2k+b
,
解得
k=2
b=2
,
∴此直線的解析式為y=2x+2;
設(shè)過點(diǎn)D、E的直線解析式為y=ax+c,
∵D(-2,-2),E(0,-3),
-2=-2a+c
-3=c

解得
a=-
1
2
c=-3
,
∴此直線的解析式為y=-
1
2
x-3,
∵2×(-
1
2
)=-1,
∴PD⊥DE,
∵點(diǎn)D在⊙P上,
∴直線l與⊙P相切.
方法二:連接PE,PD,
∵直線 l過點(diǎn) D(-2,-2 ),E (0,-3 ),
∴PE2=12+32=10,PD2=5,DE2=5,..
∴PE2=PD2+DE2
∴△PDE 是直角三角形,且∠PDE=90°.
∴PD⊥DE.
∵點(diǎn)D在⊙P上,
∴直線l與⊙P相切.
點(diǎn)評:本題考查的是直線與圓的位置關(guān)系,根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•涼山州)如圖,拋物線y=ax2-2ax+c(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.
(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動,分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請用含m的代數(shù)式表示PM的長;
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•涼山州)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(10,0),(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動,當(dāng)△ODP是腰長為5的等腰三角形時,點(diǎn)P的坐標(biāo)為
(2,4)或(3,4)或(8,4)
(2,4)或(3,4)或(8,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•涼山州)-2是2的( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•涼山州)你認(rèn)為下列各式正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•涼山州)如果單項(xiàng)式-xa+1y3
1
2
ybx2
是同類項(xiàng),那么a、b的值分別為(  )

查看答案和解析>>

同步練習(xí)冊答案