如圖,已知拋物線y=-
2
3
x2+
4
3
x+2的圖象與x軸交于A,B兩點,與y軸交于點C,拋物線的對稱軸與x軸交于點D.點M從O點出發(fā),以每秒1個單位長度的速度向B運動,過M作x軸的垂線,交拋物線于點P,交BC于Q.
(1)求點B和點C的坐標(biāo);
(2)設(shè)當(dāng)點M運動了x(秒)時,四邊形OBPC的面積為S,求S與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)在線段BC上是否存在點Q,使得△DBQ成為以BQ為一腰的等腰三角形?若存在,求出點Q的坐標(biāo),若不存在,說明理由.
(1)把x=0代入y=-
2
3
x2+
4
3
x+2得點C的坐標(biāo)為C(0,2)
把y=0代入y=-
2
3
x2+
4
3
x+2得點B的坐標(biāo)為B(3,0)

(2)連接OP,設(shè)點P的坐標(biāo)為P(x,y)
S四邊形OBPC=S△OPC+S△OPB=
1
2
×2×x+
1
2
×3×y
=x+
3
2
-
2
3
x2+
4
3
x+2

∵點M運動到B點上停止,
∴0≤x≤3
∴S=-(x-
3
2
2+
21
4
(0≤x≤3)

(3)存在.
BC=
OB2+OC2
=
13

①若BQ=DQ
∵BQ=DQ,BD=2
∴BM=1
∴OM=3-1=2
tan∠OBC=
QM
BM
=
OC
OB
=
2
3

∴QM=
2
3

所以Q的坐標(biāo)為Q(2,
2
3
).
②若BQ=BD=2
∵△BQM△BCO,
BQ
BC
=
QM
CO
=
BM
BO

2
13
=
QM
2

∴QM=
4
13
13

BQ
BC
=
BM
OB

2
13
=
BM
3

∴BM=
6
13
13

∴OM=3-
6
13
13

所以Q的坐標(biāo)為Q(3-
6
13
13
,
4
13
13
).
綜上所述,Q的坐標(biāo)為Q(2,
2
3
)或Q(3-
6
13
13
,
4
13
13
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,二次函數(shù)y=-x2+2x+m的圖象與x軸的一個交點為A(3,0),另一個交點為B,且與y軸交于點C.
(1)求m的值;
(2)求點B的坐標(biāo);
(3)該二次函數(shù)圖象上有一點D(x,y)(其中x>0,y>0)使S△ABD=S△ABC,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:AC是⊙O的直徑,點A、B、C、O在⊙O1上,OA=2.建立如圖所示的直角坐標(biāo)系.∠ACO=∠ACB=60度.
(1)求點B關(guān)于x軸對稱的點D的坐標(biāo);
(2)求經(jīng)過三點A、B、O的二次函數(shù)的解析式;
(3)該拋物線上是否存在點P,使四邊形PABO為梯形?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx的圖象開口向下,與x軸的一個交點為B,頂點A在直線y=x上,O為坐標(biāo)原點.
(1)證明:△AOB是等腰直角三角形;
(2)若△AOB的外接圓C的半徑為1,求該二次函數(shù)的解析式;
(3)對題(2)中所求出的二次函數(shù),在其圖象上是否存在點P(點P與點A不重合),使得△POC是以PC為腰的等腰三角形,若存在,請求出點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象過(0,3),(3,0),且對稱軸為直線x=1.
(1)求這個二次函數(shù)的圖象的解析式;
(2)指出二次函數(shù)圖象的頂點坐標(biāo);
(3)利用草圖分析,當(dāng)函數(shù)值y>0時,x的取值范圍是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某通訊器材公司銷售一種市場需求較大的新型通訊產(chǎn)品.已知每件產(chǎn)品的進(jìn)價為40元,每年銷售該種產(chǎn)品的總開支(不含進(jìn)價)總計120萬元.在銷售過程中發(fā)現(xiàn),年銷售量y(萬件)與銷售單價x(元)之間存在著如圖所示的一次函數(shù)關(guān)系.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)試寫出該公司銷售該種產(chǎn)品的年獲利z(萬元)關(guān)于銷售單價x(元)的函數(shù)關(guān)系式(年獲利=年銷售額一年銷售產(chǎn)品總進(jìn)價一年總開支).當(dāng)銷售單價x為何值時,年獲利最大并求這個最大值;
(3)若公司希望該種產(chǎn)品一年的銷售獲利不低于40萬元,借助(2)中函數(shù)的圖象,請你幫助該公司確定銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認(rèn)為銷售單價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某學(xué)校校園內(nèi)有一塊形狀為直角梯形的空地ABCD,其中ABDC,∠B=90°,AB=100m,BC=80m,CD=40m,現(xiàn)計劃在上面建設(shè)一個面積為S的矩形綜合樓PMBN,其中點P在線段AD上,且PM的長至少為36m.
(1)求邊AD的長;
(2)設(shè)PA=x(m),求S關(guān)于x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)若S=3300m2,求PA的長.(精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

近幾年,被稱為“園林城市,生態(tài)家園”的宿遷旅游業(yè)得到長足的發(fā)展,到宿遷觀光旅游的客人越來越多,“真如禪寺”景點每天都吸引大量的游客前來觀光.事實表明,如果游客過多,不利于保護珍貴文物,為了實施可持續(xù)發(fā)展,兼顧社會效益和經(jīng)濟效益,該景點擬采取浮動門票價格的方法來控制游客人數(shù).已知每張門票原價為40元,現(xiàn)設(shè)浮動門票為每張x元,且40≤x≤70,經(jīng)市場調(diào)研發(fā)現(xiàn)一天游覽人數(shù)y與票價x之間存在著如圖所示的一次函數(shù)關(guān)系.
(1)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)該景點一天的門票收入為W元.
①試用x代數(shù)式表示W(wǎng);
②試問:當(dāng)門票定為多少時,該景點一天的門票收入最高?最高門票收入是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一條長7.2米的木料,做成如圖所示的“日”字形的窗框,問窗的高和寬各取多少米時,這個窗的面積最大?(不考慮木料加工時損耗和中間木框所占的面積)

查看答案和解析>>

同步練習(xí)冊答案