近幾年,被稱(chēng)為“園林城市,生態(tài)家園”的宿遷旅游業(yè)得到長(zhǎng)足的發(fā)展,到宿遷觀光旅游的客人越來(lái)越多,“真如禪寺”景點(diǎn)每天都吸引大量的游客前來(lái)觀光.事實(shí)表明,如果游客過(guò)多,不利于保護(hù)珍貴文物,為了實(shí)施可持續(xù)發(fā)展,兼顧社會(huì)效益和經(jīng)濟(jì)效益,該景點(diǎn)擬采取浮動(dòng)門(mén)票價(jià)格的方法來(lái)控制游客人數(shù).已知每張門(mén)票原價(jià)為40元,現(xiàn)設(shè)浮動(dòng)門(mén)票為每張x元,且40≤x≤70,經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn)一天游覽人數(shù)y與票價(jià)x之間存在著如圖所示的一次函數(shù)關(guān)系.
(1)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)該景點(diǎn)一天的門(mén)票收入為W元.
①試用x代數(shù)式表示W(wǎng);
②試問(wèn):當(dāng)門(mén)票定為多少時(shí),該景點(diǎn)一天的門(mén)票收入最高?最高門(mén)票收入是多少?
(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,
根據(jù)題意,得
50k+b=3500
60k+b=3000
,
解得
k=-50
b=6000

所以y與x之間的函數(shù)關(guān)系式為y=-50x+6000;

(2)W=(-50x+6000)x=-50x2+6000x,
當(dāng)x=-
6000
2×(-50)
=60時(shí),W最大,
此時(shí)最大值為60×3000=180000(元).
答:該景點(diǎn)門(mén)票定為60元時(shí),一天的門(mén)票收入最高,最高門(mén)票收入是18萬(wàn)元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(1)將拋物線y1=2x2向右平移2個(gè)單位,得到拋物線y2的圖象,則y2=______;
(2)如圖,P是拋物線y2對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),直線x=t平行于y軸,分別與直線y=x、拋物線y2交于點(diǎn)A、B.若△ABP是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿足條件的t的值,則t=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線y=ax2+bx+c,與x軸交于點(diǎn)A(-3,0),對(duì)稱(chēng)軸為x=-1,頂點(diǎn)C到x軸的距離為2,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-
1
2
x2
+bx+c的圖象經(jīng)過(guò)A(2,0)、B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對(duì)稱(chēng)軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

現(xiàn)有鋁合金窗框料8米,準(zhǔn)備用它做一個(gè)如圖所示的長(zhǎng)方形窗架,一般來(lái)說(shuō),當(dāng)窗戶總面積最大時(shí),窗戶的透光最好.那么,要使這個(gè)窗戶透光最好,窗架的寬應(yīng)為多少米此時(shí)窗戶的總面積是多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿的市場(chǎng)售價(jià)與上市時(shí)間的關(guān)系用圖一的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖二的拋物線段表示.

(1)寫(xiě)出圖一表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式P;寫(xiě)出圖二表示的種植成本與時(shí)間的函數(shù)關(guān)系式Q;
(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問(wèn)何時(shí)上市的西紅柿純收益最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有一座拋物線型拱橋,其水面寬AB為18米,拱頂O離水面AB的距離OM為8米,貨船在水面上的部分的橫斷面是矩形CDEF,如圖建立平面直角坐標(biāo)系.
(1)求此拋物線的解析式;
(2)如果限定矩形的長(zhǎng)CD為9米,那么矩形的高DE不能超過(guò)多少米,才能使船通過(guò)拱橋;
(3)若設(shè)EF=a,請(qǐng)將矩形CDEF的面積S用含a的代數(shù)式表示,并指出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=-
2
3
x2+
4
3
x+2的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)D.點(diǎn)M從O點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向B運(yùn)動(dòng),過(guò)M作x軸的垂線,交拋物線于點(diǎn)P,交BC于Q.
(1)求點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)設(shè)當(dāng)點(diǎn)M運(yùn)動(dòng)了x(秒)時(shí),四邊形OBPC的面積為S,求S與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)在線段BC上是否存在點(diǎn)Q,使得△DBQ成為以BQ為一腰的等腰三角形?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖矩形OABC,AB=2OA=2n,分別以O(shè)A和OC為x、y軸建立平面直角坐標(biāo)系,連接OB,沿OB折疊,使點(diǎn)A落在P處.過(guò)P作PQ⊥y軸于Q.
(1)求OD:OA的值;
(2)以B為頂點(diǎn)的拋物線:y=ax2+bx+c,經(jīng)過(guò)點(diǎn)D,與直線OB相交于E,過(guò)E作EF⊥y軸于F,試判斷2•PQ•EF與矩形OABC面積的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案