【題目】如圖,△ABC為等腰三角形,ABACABBC,∠1=∠290°,∠1+∠BAC180°,點(diǎn)A、F、E、D在一條直線上,點(diǎn)DBC邊上,CD2BD.若△ABC的面積為40,求△ABE與△CDF的面積之和________

【答案】

【解析】

先證明△ABE≌△CAF(AAS),再得到△ABE與△CDF的面積之和即為△ADC的面積,再求△ADC的面積即可.

∵∠1=∠290°,∠1+∠BAC180°,

∴∠2+∠BAC180°,

又∵∠2+∠FAC+FCA180°,

∴∠BAC=∠FAC+FCA,

又∵∠BAC=∠BAE+FAC,

∴∠BAE+FAC=∠FAC+FCA,

∴∠BAE=∠FCA,

在△ABE和△CAF

,

∴△ABE≌△CAF(AAS)

∴△ABE與△CDF的面積之和為S△ADC。

∵點(diǎn)DBC邊上,CD2BD.若△ABC的面積為40,

∴S△AD.

∴△ABE與△CDF的面積之和為

故答案是:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy拋物線 y軸于點(diǎn)為A,頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)H

1求頂點(diǎn)D的坐標(biāo)用含m的代數(shù)式表示);

2當(dāng)拋物線過點(diǎn)1,-2),且不經(jīng)過第一象限時(shí),平移此拋物線到拋物線的位置,求平移的方向和距離;

3當(dāng)拋物線頂點(diǎn)D在第二象限時(shí),如果∠ADH=∠AHO,m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廣場(chǎng)上一個(gè)形狀是平行四邊形的花壇,分別種有紅、黃、藍(lán)、白、橙、紫6種顏色的花.如果有ABEFDC,BCGHAD,那么下列說法中錯(cuò)誤的是( 。

A.紅花,白花種植面積一定相等

B.紅花,藍(lán)花種植面積一定相等

C.藍(lán)花,黃花種植面積一定相等

D.紫花,橙花種植面積一定相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AB是⊙O的直徑,∠D=108°,連接AC.(1)求∠BAC的度數(shù);(2)若∠DAC=45°,DC=8,求圖中陰影部分的面積(保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在ABC 中,AD平分∠BAC,AEBC,∠B=40°,∠C=70°.

(1)求∠DAE的度數(shù);

(2)如圖②,若把“AEBC”變成“點(diǎn)FDA的延長線上,FEBC”,其它條件不變,求∠DFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】無人機(jī)技術(shù)我國逐漸發(fā)展迅速,全球首款噸位級(jí)貨運(yùn)無人機(jī)從設(shè)計(jì)到總裝在四川成都雙流區(qū)完成,現(xiàn)有兩架航拍無人機(jī):1號(hào)無人機(jī)從海拔5米處出發(fā),以1米/秒的速度上升。與此同時(shí),2號(hào)無人機(jī)從海拔15米處出發(fā),以0.5米/秒的速度上升(設(shè)無人機(jī)上升時(shí)間為秒)。

1)求出1號(hào)無人機(jī)所在位置的海拔(米)與之間的關(guān)系式和2號(hào)無人機(jī)所在位置的海拔(米)與之間的關(guān)系式?

2)在某一時(shí)刻兩架無人機(jī)能否位于同一高度?如果能,請(qǐng)求出無人機(jī)上升的時(shí)間與高度?如果不能,請(qǐng)說明理由.

3)上升多少時(shí)間,兩架無人機(jī)所在位置的海拔相差5米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BEAC、CFAB于點(diǎn)EF,BECF交于點(diǎn)D,DE=DF,連接AD

求證:(1FAD=EAD

2BD=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以O為原點(diǎn)的直角坐標(biāo)系中,矩形OABC的兩邊OCOA分別在x軸、y軸的正半軸上,反比例函數(shù) (x0)AB相交于點(diǎn)D,與BC相交于點(diǎn)E,若BD=3AD,且ODE的面積是9,k的值是( )

A.B. C.D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車間的甲、乙兩名工人分別同時(shí)生產(chǎn)同種零件,在開始生產(chǎn)的前2個(gè)小時(shí)為生產(chǎn)磨合期,2個(gè)小時(shí)后有一人停工一段時(shí)間對(duì)設(shè)備進(jìn)行改良升級(jí),以提升生產(chǎn)效率,另一人進(jìn)入正常的生產(chǎn)模式,他們每人生產(chǎn)的零件總數(shù)(個(gè))與生產(chǎn)時(shí)間(小時(shí))的關(guān)系如圖所示,根據(jù)圖象回答:

1)在生產(chǎn)過程中,哪位工人對(duì)設(shè)備進(jìn)行改良升級(jí),停止生產(chǎn)多少小時(shí)?

2)當(dāng)為多少時(shí),甲、乙所生產(chǎn)的零件個(gè)數(shù)第一次相等?甲、乙中,誰先完成一天的生產(chǎn)任務(wù)?

3)設(shè)備改良升級(jí)后每小時(shí)生產(chǎn)零件的個(gè)數(shù)是多少?與另一工人的正常生產(chǎn)速度相比每小時(shí)多生產(chǎn)幾個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案