閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB和BC的數(shù)量關系.
(1)是,理由見解析;(2)作圖見解析;(3).

試題分析:(1)要證明點E是四邊形ABCD的AB邊上的相似點,只要證明有一組三角形相似就行,很容易證明△ADE∽△BEC,所以問題得解.
(2)根據(jù)兩個直角三角形相似得到強相似點的兩種情況即可.
(3)因為點E是梯形ABCD的AB邊上的一個強相似點,所以就有相似三角形出現(xiàn),根據(jù)相似三角形的對應線段成比例,可以判斷出AE和BE的數(shù)量關系,從而可求出解.
試題解析:(1)點E是四邊形ABCD的邊AB上的相似點.
理由:∵∠A=55°,
∴∠ADE+∠DEA=125°.
∵∠DEC=55°,
∴∠BEC+∠DEA=125°.
∴∠ADE=∠BEC.
∵∠A=∠B,
∴△ADE∽△BEC.
∴點E是四邊形ABCD的AB邊上的相似點.
(2)作圖如下:

(3)∵點E是四邊形ABCM的邊AB上的一個強相似點,
∴△AEM∽△BCE∽△ECM,
∴∠BCE=∠ECM=∠AEM.
由折疊可知:△ECM≌△DCM,
∴∠ECM=∠DCM,CE=CD,
∴∠BCE=∠BCD=30°,
∴BE=CE=AB.
在Rt△BCE中,tan∠BCE==tan30°,
,

考點: 相似形綜合題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

已知,則          .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

網(wǎng)格中每個小正方形的邊長都是1.
(1)將圖1中畫一個格點三角形DEF,使得△DEF≌△ABC

(2)將圖2中畫一個格點三角形MNL,使得△MNL∽△ABC,且相似比為2:1

(3)將圖3中畫一個格點三角形OPQ,使得△OPQ∽△ABC,且相似比為:1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在⊙O中,直徑AB⊥CD于點E,連接BC.

(1)線段BC、BE、AB應滿足的數(shù)量關系是      ;
(2)若點P是優(yōu)弧上一點(不與點C、A、D重合),連接BP與CD交于點G.
請完成下面四個任務:
①根據(jù)已知畫出完整圖形,并標出相應字母;
②在正確完成①的基礎上,猜想線段BC、BG、BP應滿足的數(shù)量關系是       ;
③證明你在②中的猜想是正確的;
④點P′恰恰是你選擇的點P關于直徑AB的對稱點,那么按照要求畫出圖形后在②中的猜想仍然正確嗎?    ;(填正確或者不正確,不需證明)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某同學想測量旗桿的高度,他在某一時刻測得1米長的竹竿豎直放置時影長1.5米,在同一時刻測量旗桿的影長時,因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測得落在地面上的影長為21米,留在墻上的影高為2米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在同一時刻,太陽光下身高1.6m的小強的影長是1.2m,學校旗桿的影長是15m,則旗桿高為   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,若DE∥BC,AD=5,BD=10,DE=4,則BC的值為(      )
A.8B.9C.10D.12

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

兩個三角形周長之比為9∶5,則面積比為(  )
A.9∶5B.81∶25C.3∶D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,D、E分別是AB、AC邊上的點,且DE//BC,如果DE:BC=3:5,那么AE:AC的值為(       )

A.        B.       C.      D.

查看答案和解析>>

同步練習冊答案