【題目】如圖,二次函數(shù)的圖象與x軸相交于點A(﹣3,0)、B(﹣1,0),與y軸相交于點C(0,3),點P是該圖象上的動點;一次函數(shù)y=kx﹣4k(k≠0)的圖象過點P交x軸于點Q.
(1)求該二次函數(shù)的解析式;
(2)當點P的坐標為(﹣4,m)時,求證:∠OPC=∠AQC;
(3)點M,N分別在線段AQ、CQ上,點M以每秒3個單位長度的速度從點A向點Q運動,同時,點N以每秒1個單位長度的速度從點C向點Q運動,當點M,N中有一點到達Q點時,兩點同時停止運動,設運動時間為t秒.
①連接AN,當△AMN的面積最大時,求t的值;
②直線PQ能否垂直平分線段MN?若能,請求出此時點P的坐標;若不能,請說明你的理由.
【答案】(1)y=(x+3)(x+1)=x2+4x+3.(2)見解析;(3)①當t=時,△AMN的面積最大.②直線PQ能垂直平分線段MN.
【解析】
試題分析:(1)利用交點式求出拋物線的解析式;
(2)證明四邊形POQC是平行四邊形,則結(jié)論得證;
(3)①求出△AMN面積的表達式,利用二次函數(shù)的性質(zhì),求出△AMN面積最大時t的值.注意:由于自變量取值范圍的限制,二次函數(shù)并不是在對稱軸處取得最大值;
②直線PQ上的點到∠AQC兩邊的距離相等,則直線PQ能平分∠AQC,所以直線PQ能垂直平分線段MN.
(1)解:設拋物線的解析式為:y=a(x+3)(x+1),
∵拋物線經(jīng)過點C(0,3),
∴3=a×3×1,解得a=1.
∴拋物線的解析式為:y=(x+3)(x+1)=x2+4x+3.
(2)證明:在拋物線解析式y(tǒng)=x2+4x+3中,當x=﹣4時,y=3,∴P(﹣4,3).
∵P(﹣4,3),C(0,3),
∴PC=4,PC∥x軸.
∵一次函數(shù)y=kx﹣4k(k≠0)的圖象交x軸于點Q,當y=0時,x=4,
∴Q(4,0),OQ=4.
∴PC=OQ,又∵PC∥x軸,
∴四邊形POQC是平行四邊形,
∴∠OPC=∠AQC.
(3)解:①在Rt△COQ中,OC=3,OQ=4,由勾股定理得:CQ=5.
如答圖1所示,過點N作ND⊥x軸于點D,則ND∥OC,
∴△QND∽△QCO,
∴,即,解得:ND=3﹣t.
設S=S△AMN,則:
S=AMND=3t(3﹣t)=﹣(t﹣)2+.
又∵AQ=7,∴點M到達終點的時間為t=,
∴S=﹣(t﹣)2+(0<t≤).
∵﹣<0,<,且x<時,y隨x的增大而增大,
t=2.5時已超過運動時間又因為開口向下所以取,
∴當t=時,△AMN的面積最大.
②假設直線PQ能夠垂直平分線段MN,則有QM=QN,且PQ⊥MN,PQ平分∠AQC.
由QM=QN,得:7﹣3t=5﹣t,解得t=1.
設P(x,x2+4x+3),
若直線PQ⊥MN,則:過P作直線PE⊥x軸,垂足為E,
則△PEQ∽△MDN,
∴,
∴
∴x=,
∴P(,)或(,)
∴直線PQ能垂直平分線段MN.
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校八年級500名學生的體重情況,從中抽查了60名學生的體重進行統(tǒng)計分析,在這個問題中,總體是指( )
A. 500名學生 B. 被抽取的60名學生
C. 500名學生的體重 D. 被抽取的60名學生的體重
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,點B、F、C、E在同一直線上,AC、DF相交于點G,AB⊥BE,垂足為B,DE⊥BE,垂足為E,且AB=DE,BF=CE。
求證:(1)△ABC≌△DEF;
(2)GF=GC。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD被直線EF所截,∠1=50°,下列說法錯誤的是( )
A.如果∠5=50°,那么AB∥CD B.如果∠4=130°,那么AB∥CD
C.如果∠3=130°,那么AB∥CD D.如果∠2=50°,那么AB∥CD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com