【題目】如圖,在△ABC中,ABAC,AD是△ABC的中線.

(1)利用尺規(guī)按下列要求作圖,并在圖中標明相應字母.(保留作圖痕跡,不寫作法)

①作線段AC的垂直平分線,分別交AC、AD、AB于點E、MF;②連接CM、BM;

(2)若∠CAD=20°,求∠MCD的度數(shù).

【答案】1)①見解析;②見解析;(2)∠MCD=50°.

【解析】

1)理由尺規(guī)作出AC的平分線分別交AC、ADAB于點E、M、F即可,②連接CM、BM

2)根據(jù)題意可知ADBC,可得∠ACD=70°,再由EF垂直平分AC得到∠ACM=CAD.

解:(1)如右圖所示,直線EF即為所求.

2)∵AB=AC,ADABC的中線,

ADBC.

∵∠CAD=20°,

∴∠ACD=70°.

EF垂直平分AC,

AM=CM.

∴∠ACM=CAD.

∴∠MCD=50°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從地出發(fā),勻速駛向地.甲車以的速度行駛后,乙車沿相同的路線出發(fā).乙車先到達地并停留后,再以原來的速度按原路線返回,直到與甲車相遇.在這個過程中,兩車之間的距離與乙車行駛的時間之間的函數(shù)關系如圖所示,則當兩車相距時,乙車出發(fā)的時間為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結AD1、BC1已知∠ACB=30°,AB=1,

(1)求證:△A1AD1≌△CC1B;

(2)當CC1=1時,求證:四邊形ABC1D1是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,的平分線與外角的平分線所在的直線交于點.

(1)如圖1,若,求的度數(shù);

(2)如圖2,把沿翻折,點落在處.

①當時,求的度數(shù);②試確定的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,過點的直線邊上一點,過點,交直線垂足為,連接

(1)求證:

(2)當中點時,四邊形是什么特殊四邊形?說明你的理由;

(3)若中點,則當的大小滿足什么條件時,四邊形是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線與⊙O,AB是⊙O的直徑,AD于點D

1如圖①,當直線與⊙O相切于點C時,若∠DAC=30°,求∠BAC的大小;

2如圖②,當直線與⊙O相交于點EF時,若∠DAE=18°,求∠BAF的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平分,平分交于,若,則的度數(shù)為_________.(用表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標平面內(nèi),已知點的坐標是,點的坐標是

(1)圖中點的坐標是__________________;

(2)三角形的面積為___________________;

(3)點關于軸對稱的點的坐標是______________;

(4)如果將點沿著軸平行的方向向右平移3個單位得到點,那么、兩點之間的距離是_________;

(5)圖中四邊形的面積是___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖在ABC,ADE中,∠BAC=DAE=90°AB=AC,AD=AE,點CD,E三點在同一條直線上,連接BD,BE.以下四個結論:①BD=CE;②BDCE;③∠ACE+DBC=45°;④BE2=AD2+AB2),其中結論正確的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案