【題目】如圖,在中,,,將繞點逆時針旋轉(zhuǎn)后得到,則圖中陰影部分的面積是______

【答案】

【解析】

根據(jù)含30度的直角三角形三邊的關(guān)系得到AB2AC4,,根據(jù)互余得到∠CAB60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到AC′=AC2,AB′=AB4BC′=BC2,∠BAB30°,∠CAB′=∠CAB60°,則∠CAD=∠CAB′∠BAB′=30°,接著在RtACD中,利用∠CAD30°可得CDAC′=,所以BDBCCD,然后根據(jù)三角形面積公式、扇形面積公式和圖中陰影部分的面積=S扇形BABSADB進行計算即可.

,,

繞點逆時針旋轉(zhuǎn)后得到,

,,,,

中,

,

,

題圖中陰影部分的面積=

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A,CEFADBC,DEBF,AECF.

(1)求證:四邊形ABCD是平行四邊形;

(2)直接寫出圖中所有相等的線段(AECF除外).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中有點和某一函數(shù)圖象,過點軸的垂線,交圖象于點,設點,的縱坐標分別為,.如果,那么稱點為圖象的上位點;如果,那么稱點為圖象的圖上點;如果,那么稱點為圖象的下位點.

1)已知拋物線.

在點A(-10),B(0-2),C(23)中,是拋物線的上位點的是 ;

如果點是直線的圖上點,且為拋物線的上位點,求點的橫坐標的取值范圍;

2)將直線在直線下方的部分沿直線翻折,直線的其余部分保持不變,得到一個新的圖象,記作圖象.⊙的圓心軸上,半徑為.如果在圖象和⊙上分別存在點和點F,使得線段EF上同時存在圖象的上位點,圖上點和下位點,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點在線段上,以為直徑的相交于點,與相交于點,

1)求證:的切線;

2)在(1)的條件下,判斷以為頂點的四邊形為哪種特殊四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(1a)是反比例函數(shù)y1=的圖象上一點,直線y2=與反比例函數(shù)y1=的圖象的交點為點B、D,且B(3,﹣1),求:

1)求反比例函數(shù)的解析式;

2)求點D坐標,并直接寫出y1y2x的取值范圍;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于,兩點,與軸,軸分別交于兩點.

1)求一次函數(shù)的解析式;

2)根據(jù)圖象直接寫出,時的取值范圍;

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市地鐵1號線全長約60km,市政府通過招標,甲、乙兩家地鐵工程公司承擔了施工任務,根據(jù)招標合同可知,甲公司每月計劃施工效率是乙公司的1.2倍,則乙公司單獨施工比甲公司單獨施工多用10個月,且市政府需要支付給甲公司的施工費用為6億元/km,乙公司的施工費用為5億元/km

1)甲、乙兩家地鐵工程公司每月計劃施工各為多少km?

2)由于設備和施工現(xiàn)場只能供一家地鐵工程公司單獨施工的原因,現(xiàn)計劃甲、乙兩家公司共用55個月恰好完成施工任務(每家公司施工時間不足一個月按照一個整月計算),且甲公司施工時間不得少于乙公司的兩倍,應如何安排才能使市政府支付給兩家地鐵工程公司的總費用最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】全面兩孩政策實施后,甲,乙兩個家庭有各自的規(guī)劃.假定生男生女的概率相,回答下列問題

(1家庭已有一個男孩,準備生一個孩子,第二個孩子是女孩的率是 ;

(2)乙家庭沒有孩子,準備生兩個孩子,求至少有一個孩子是女孩的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在中,,以為弦的相切于點

1)求證:的切線;

2)將以下部分沿直線向上翻折.

①如圖2,若翻折后的弧過中點,并交于點,請判斷的關(guān)系,并說明理由.

②如圖3,若,且翻折后的弧恰好過點,則的半徑為________

查看答案和解析>>

同步練習冊答案