如圖,將Rt△ACF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△ABD,BD的延長(zhǎng)線交CF于點(diǎn)E,連接BC,若∠1=∠2、BD=4時(shí),CE的長(zhǎng)為
2
2
分析:由旋轉(zhuǎn)知:∠F=∠BCF,則BF=BC;然后根據(jù)等腰△FBC的“三合一”的性質(zhì)推知EF=EC=
1
2
CF,由旋轉(zhuǎn)的性質(zhì)證得CF=BD.易求CE線段的長(zhǎng)度.
解答:解:由旋轉(zhuǎn)知:△ACF≌△ABD,則BD=CF,∠F=∠ADB,∠1=∠FCA.
∵∠ADB=∠EDC(對(duì)頂角相等),∠1=∠2,
∴∠F=∠EDC,∠2=∠FCA,
∴∠F=∠ADB=∠2+∠ACB=∠FCA+∠ACB=∠BCF,即∠F=∠BCF,
∴BF=BC,
∴CF=2CE,
∴CE=
1
2
CF=
1
2
BD=2.
故答案是:2.
點(diǎn)評(píng):本題主要考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)找出相等的角和相等的邊.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將Rt△ACF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△ABD,BD的延長(zhǎng)線交CF于點(diǎn)E,連接BC,∠1=∠2.
(1)試找出所有與∠F相等的角,并說明理由.
(2)若BD=4.求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江西省宜春市樟樹市九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,將Rt△ACF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△ABD,BD的延長(zhǎng)線交CF于點(diǎn)E,連接BC,∠1=∠2.
(1)試找出所有與∠F相等的角,并說明理由.
(2)若BD=4.求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省銅陵市九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,將Rt△ACF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△ABD,BD的延長(zhǎng)線交CF于點(diǎn)E,連接BC,∠1=∠2.
(1)試找出所有與∠F相等的角,并說明理由.
(2)若BD=4.求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省珠海市紫荊中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,將Rt△ACF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△ABD,BD的延長(zhǎng)線交CF于點(diǎn)E,連接BC,∠1=∠2.
(1)試找出所有與∠F相等的角,并說明理由.
(2)若BD=4.求CE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案