【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)、點(diǎn),動點(diǎn)從點(diǎn)開始在線段上以每秒個(gè)單位長度的速度向點(diǎn)移動,同時(shí)動點(diǎn)從點(diǎn)開始在線段上以每秒個(gè)單位長度的速度向點(diǎn)移動,設(shè)點(diǎn)、移動的時(shí)間為秒.
求點(diǎn)的坐標(biāo);
當(dāng)為何值時(shí),的面積為個(gè)平方單位?
【答案】;(2)當(dāng)為秒或秒時(shí),的面積為個(gè)平方單位.
【解析】
(1)過點(diǎn)Q作QH⊥AO于H,如圖所示,易證△AHQ∽△AOB,根據(jù)相似三角形的性質(zhì)可用t的代數(shù)式表示出QH,進(jìn)而表示出HO的長,進(jìn)而得出答案;
(2)利用(1)中所求,從而得到△APQ的面積與t的關(guān)系,根據(jù)條件就可求出t的值.
解:如圖,
過點(diǎn)作于,如圖所示,
則有.
又∵,∴,
∴,
∴,
∴,
設(shè),則,
∵,
∴,
故
解得:,
則;
由得:.
當(dāng)時(shí),,
解得:,.
∴當(dāng)為秒或秒時(shí),的面積為個(gè)平方單位.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的口袋中,有四只形狀、大小、質(zhì)地完全相同的小球,四只小球上分別標(biāo)有數(shù)字,,,、小明先從盒子里隨機(jī)取出一只小球(不放回),記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)的橫坐標(biāo);再由小華隨機(jī)取出一只小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)的縱坐標(biāo).
用列表法或畫樹狀圖,表示所有這些點(diǎn)的坐標(biāo);
小剛為小明、小華兩人設(shè)計(jì)了一個(gè)游戲:當(dāng)上述中的點(diǎn)在正比例函數(shù)圖象上方時(shí)小明獲勝,否則小華獲勝、你認(rèn)為這個(gè)游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面上將邊長相等的正三角形、正方形、正五邊形、正六邊形的一邊重合并疊在一起,則∠3+∠1-∠2= _______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,(1,5)、(1,0)、(4,3).
(1)在圖中作出△關(guān)于軸的對稱圖形△;
(2)寫出點(diǎn)、、的坐標(biāo);
(3)在軸上畫出點(diǎn),使最小;
(4)求六邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的頂點(diǎn)為,與軸的一個(gè)交點(diǎn)在點(diǎn)和之間,其部分圖象如圖所示,則以下結(jié)論:①;②;③;④方程以有兩個(gè)的實(shí)根,其中正確的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AQ=PQ,PR⊥AB于點(diǎn)R,PS⊥AC于點(diǎn)S,PR=PS,則下列結(jié)論:①AP⊥BC;②AS=AR;③QP∥AR;④△BRP≌△QSP.正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC 中,∠ACB=90°,AC=80,BC=60, 點(diǎn)D 從點(diǎn) B 出發(fā),在線段 BA 上以每秒 4 個(gè)單位長度的速度向終點(diǎn)A 運(yùn)動,連結(jié)CD. 設(shè)點(diǎn)D 運(yùn)動的時(shí)間為 t 秒.
(1)用含 t 的代數(shù)式表示 BD 的長.
(2)求AB 的長及 AB 邊上的高.
(3)當(dāng)△BCD 為等腰三角形時(shí),直接寫出 t 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一元二次方程,下列說法:
①若,方程有兩個(gè)不等的實(shí)數(shù)根;
②若方程有兩個(gè)不等的實(shí)數(shù)根,則方程也一定有兩個(gè)不等的實(shí)數(shù)根;
③若是方程的一個(gè)根,則一定有成立;
④若是方程的一個(gè)根,則一定有成立,其中正確的只有( )
A. ①②④ B. ②③ C. ③④ D. ①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com