【題目】如圖,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至正方形AB'C'D',邊B'C'CD于點(diǎn)E.若正方形ABCD的邊長(zhǎng)為3,則DE的長(zhǎng)為_____

【答案】

【解析】

連接AE,由旋轉(zhuǎn)性質(zhì)知ADAB′3、∠BAB′30°、∠B′AD60°,證RtADERtAB′E得∠DAEB′AD30°,由DEADtanDAE可得答案.

解:如圖,連接AE

∵將邊長(zhǎng)為3的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到正方形AB'C′D′,

ADAB′3,∠BAB′30°,

∴∠B′AD60°,

RtADERtAB′E中,

,

RtADERtAB′EHL),

∴∠DAE=∠B′AEB′AD30°,

DEADtanDAE,

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年以來(lái)豬肉價(jià)格不斷走高,引起了民眾與區(qū)政府的高度關(guān)注,當(dāng)市場(chǎng)豬肉的平均價(jià)格每 千克達(dá)到一定的單價(jià)時(shí),政府將投入儲(chǔ)備豬肉以平抑豬肉價(jià)格.據(jù)統(tǒng)計(jì):從今年年初至 11 10 日,豬排骨價(jià)格不斷走高,11 10 日比年初價(jià)格上漲了 75%.今年 11 10 日某市 民于 A 超市購(gòu)買 5 千克豬排骨花費(fèi) 350 元.

1A 超市 11 月排骨的進(jìn)貨價(jià)為年初排骨售價(jià)的倍,按 11 10 日價(jià)格出售,平均一天能銷售出 100 千克,超市統(tǒng)計(jì)發(fā)現(xiàn):若排骨的售價(jià)每千克下降 1 元,其日銷售量就增加 20千克,超市為了實(shí)現(xiàn)銷售排骨每天有 1000 元的利潤(rùn),為了盡可能讓顧客優(yōu)惠應(yīng)該將排骨的 售價(jià)定位為每千克多少元?

211 11 日,區(qū)政府決定投入儲(chǔ)備豬肉并規(guī)定排骨在 11 10 日售價(jià)的基礎(chǔ)上下調(diào) a%出售,A 超市按規(guī)定價(jià)出售一批儲(chǔ)備排骨,該超市在非儲(chǔ)備排骨的價(jià)格不變情況下,該天的兩種豬排骨總銷量比 11 10 日增加了 a%,且儲(chǔ)備排骨的銷量占總銷量的,兩種排骨銷售的總金額比 11 10 日提高了a%,求 a 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在解方程(x22x22x22x-30時(shí),設(shè)x22x=y,則原方程可轉(zhuǎn)化為y22y-30,解得y1-1,y23,所以x22x=-1x22x=3,可得x1=x2=1,x3=3,x4=-1.我們把這種解方程的方法叫做換元法.對(duì)于方程:x2+3x=12,我們也可以類似用換元法設(shè)x+ =y,將原方程轉(zhuǎn)化為一元二次方程,再進(jìn)一步解得結(jié)果,那么換元得到的一元二次方程式是(

A.y23y120B.y2+y80

C.y23y140D.y23y100

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)貿(mào)商店服裝柜在銷售中發(fā)現(xiàn):寶樂(lè)牌童裝平均每天可以售出20件,每件盈利40元.為了迎接六一兒童節(jié),商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡快減少庫(kù)存.經(jīng)調(diào)查發(fā)現(xiàn):每件童裝每降價(jià)1元,商場(chǎng)平均每天可多銷售2件.

1)若每件童裝降價(jià)5元,則商場(chǎng)盈利多少元?

2)若商場(chǎng)每天要想盈利1200元,請(qǐng)你幫助商場(chǎng)算一算,每件童裝應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在ABC中,∠ACB90°,AC4cmBC3cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為lcm/s.連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為ts)(0t4).

1)當(dāng)t為何值時(shí),PQAC?

2)設(shè)APQ的面積為S,求St的函數(shù)關(guān)系式,并求出當(dāng)t為何值時(shí),S取得最大值?S的最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)H,E,F分別在邊AB,BCCD上,AEHF于點(diǎn)G

1)如圖1,求證:AEHF;

2)如圖2,延長(zhǎng)FH,交CB的延長(zhǎng)線于M,連接AC,交HFN.若MBBE,EC2BE,求的值;

3)如圖3,若AB2,BHDF,將線段HF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°至線段MF,連接AM,則線段AM的最小值為   .(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方形中,,,點(diǎn)從點(diǎn)開(kāi)始沿邊向終點(diǎn)的速度移動(dòng),與此同時(shí),點(diǎn)從點(diǎn)開(kāi)始沿邊向終點(diǎn)的速度移動(dòng).如果分別從、同時(shí)出發(fā),當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),兩點(diǎn)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.

1)填空:____________,____________(用含t的代數(shù)式表示);

2)當(dāng)為何值時(shí),的長(zhǎng)度等于

3)是否存在的值,使得五邊形的面積等于?若存在,請(qǐng)求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下列材料,然后解答問(wèn)題.

材料:從三角形不是等腰三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.

例如:如圖,AD分成,是等腰三角形,,那么AD就是的完美分割線.

解答下列問(wèn)題:

如圖,,∠B=40°,AD的完美分割線,是以AD為底邊的等腰三角形,____度;

,,,AD的完美分割線,是等腰三角形,____;

如圖,,AD平分,求證AD的完美分割線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由10個(gè)完全相同的正三角形構(gòu)成的網(wǎng)格圖中, 如圖所示,則=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案