【題目】如圖,由10個完全相同的正三角形構成的網(wǎng)格圖中, 如圖所示,則=______.
【答案】.
【解析】
給圖中各點標上字母,連接DE,利用等腰三角形的性質(zhì)及三角形內(nèi)角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°結合∠AED=∠AEC+∠CED可得出∠AED=90°,設等邊三角形的邊長為a,則AE=2a,DE=a,利用勾股定理可得出AD的長,再結合余弦的定義即可求出cos(α+β)的值.
給圖中各點標上字母,連接DE,如圖所示.
在△ABC中,∠ABC=120°,BA=BC,
∴∠α=30°.
同理,可得出:∠CDE=∠CED=30°=∠α.
又∵∠AEC=60°,
∴∠AED=∠AEC+∠CED=90°.
設等邊三角形的邊長為a,則AE=2a,DE=2×sin60°a=a,
∴,
∴cos(α+β)=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,M是弦與弧所圍成的圖形的內(nèi)部的一個定點,P是弦上一動點,連接并延長交弧于點Q,連接.
已知,設A,P兩點間的距離為,P,Q兩點間距離為,兩點間距離為.
小明根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù)隨自變量x的變化而變化的規(guī)律進行了研究.下面是小明的探究過程,請補充完整.
(1)按照如表中自變量x的值進行取點、畫圖、測量,分別得到了與x的幾組對應值,補全下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
5.24 | 4.24 | 3.24 | 1.54 | 1.79 | 3.47 | ||
1.31 | 1.34 | 1.42 | 1.54 | 1.80 | 2.45 | 3.47 |
(2)在同一平面直角坐標系中,描出表中各組數(shù)值對應的點和并畫出函數(shù)的圖象;
(3)結合函數(shù)圖象,解決問題:當為等腰三角形時,的長度約_________.(精確到0.1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張老師把微信運動里“好友計步榜”排名前20的好友一天行走的步數(shù)做了整理,繪制了如下不完整的統(tǒng)計圖表:
組別 | 步數(shù)分組 | 頻率 |
A | x<6000 | 0.1 |
B | 6000≤x<7000 | 0.5 |
C | 7000≤x<8000 | m |
D | x≥8000 | n |
合計 | 1 |
根據(jù)信息解答下列問題:
(1)填空:m= ,n= ;并補全條形統(tǒng)計圖;
(2)這20名朋友一天行走步數(shù)的中位數(shù)落在 組;(填組別)
(3)張老師準備隨機給排名前4名的甲、乙、丙、丁中的兩位點贊,請求出甲、乙被同時點贊的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明同學在數(shù)學實踐活動課中測景路燈的高度,如圖,已知她的目高AB為1.5米,街為站在A處看路燈頂端P的仰角為30°.再往前走2米站在C處,看路燈頂端P的仰角為45°,求路燈頂端P到地面的距離(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】云崗石窟位于山西大同市,是中國規(guī)模最大的古代石窟群之一,位于第五窟的三世佛的中央坐像是云岡石窟最大的佛像.某數(shù)學課題研究小組針對“三世佛的中央坐像的高度有多少米”這一問題展開探究,過程如下:
問題提出:
如圖①是三世佛的中央坐像,請你設計方案并求出它的高度.
方案設計:
如圖②,該課題研究小組通過研究設計了這樣一個方案,某同學在處用測角器測得佛像最高處的仰角,另一個同學在他的后方的處測得佛像底端的仰角.
數(shù)據(jù)收集:
通過查閱資料和實際測量:佛像底端到觀景臺的垂直距離為.
問題解決:
(1)根據(jù)上述方案及數(shù)據(jù),求佛像的高度;(結果保留整數(shù),參考數(shù)據(jù):,,,,,)
(2)在實際測量的過程中,有哪些措施可以減小測量數(shù)據(jù)產(chǎn)生的誤差?(寫出一條即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與拋物線: 相交于和點兩點.
⑴求拋物線的函數(shù)表達式;
⑵若點是位于直線上方拋物線上的一動點,以為相鄰兩邊作平行四邊形,當平行四邊形的面積最大時,求此時四邊形的面積及點的坐標;
⑶在拋物線的對稱軸上是否存在定點,使拋物線上任意一點到點的距離等于到直線的距離,若存在,求出定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x﹣2的圖象與x軸交于點A,與y軸交于點B,點D的坐標為(﹣1,0),二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A,B,D三點.
(1)求二次函數(shù)的解析式;
(2)如圖1,已知點G(1,m)在拋物線上,作射線AG,點H為線段AB上一點,過點H作HE⊥y軸于點E,過點H作HF⊥AG于點F,過點H作HM∥y軸交AG于點P,交拋物線于點M,當HEHF的值最大時,求HM的長;
(3)在(2)的條件下,連接BM,若點N為拋物線上一點,且滿足∠BMN=∠BAO,求點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年4月23日是第二十四個“世界讀書日“.某校組織讀書征文比賽活動,評選出一、二、三等獎若干名,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據(jù)圖中信息解答下列問題:
(1)求本次比賽獲獎的總人數(shù),并補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中“二等獎”所對應扇形的圓心角度數(shù);
(3)學校從甲、乙、丙、丁4位一等獎獲得者中隨機抽取2人參加“世界讀書日”宣傳活動,請用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com