精英家教網 > 初中數學 > 題目詳情

【題目】某公司在甲地、乙地分別生產了17臺、15臺同一種型號的機械設備,現要將這些設備全部運往A、B兩市,其中運往A市18臺、運往B市14臺,從甲地運往A、B兩市的費用分別為800元/臺和500元/臺,從乙地運往A、B兩市的費用分別為700元/臺和600元/臺.設甲地運往A市的設備有x臺.
(1)請用x的代數式分別表示甲地運往B市、乙地運往A市、乙地運往B市的設備臺數;
(2)求出總運費y(元)與x(臺) 的函數關系式,并求出自變量的取值范圍;
(3)要使總運費不高于20200元,請你幫助該公司設計調配方案,并寫出有哪幾種方案,哪種方案總運費最小,最小值是多少?

【答案】
(1)解:甲地運往B市的設備有(17﹣x)臺,

乙地運往A市的設備有(18﹣x)臺,

乙地運往B市的設備有15﹣(18﹣x)=(x﹣3)臺


(2)解:根據題意得:y=800x+500(17﹣x)+700(18﹣x)+600(x﹣3),

即y=200x+19300.

,解得3≤x≤17.

∴自變量的取值范圍是:x為正整數且3≤x≤17


(3)解:∵要使總運費不高于20200元,

∴200x+19300≤20200,

解得:x≤4.5.(8分)

又∵x為正整數且3≤x≤17,

∴x=3或4.

∴該公司調配方案有兩種:

方案一:甲地運往A市3臺,運往B市14臺,乙地運往A市15臺,運往B市0臺;

方案二:甲地運往A市4臺,運往B市13臺,乙地運往A市14臺,運往B市1臺;

∵在y=200x+19300中,k=200>0,

∴y隨x的增大而增大,

∴當x=3時,總運費最小,最小值是y=200×3+19300=19900(元).

即甲地運往A市3臺,運往B市14臺,乙地運往A市15臺,運往B市0臺總運費最小,最小值是19900元


【解析】(1)根據調配方案,即可解決問題.(2)根據每臺的運費即可得出函數關系式;利用不等式求出自變量的取值范圍.(3)列出不等式,求整數解,利用一次函數的性質確定最小值.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD沿BD對折,點A落在E處,BECD相交于F,若AD=3,BD=6

1)求證:△EDF≌△CBF;

2)求∠EBC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,點P是BA延長線上一點,點O是線段AD上一點,OP=OC,下面的結論:①∠APO+∠DCO=30°;②△OPC是等邊三角形;③AC=AO+AP;④SABC=S四邊形AOCP , 其中正確的個數是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數yax2bxca≠0)的圖象如圖所示,則下列結論正確的是

A.a<0
B.c>0
C.abc>0
D.b2-4ac<0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校招聘一名數學老師,對應聘者分別進行了教學能力、科研能力和組織能力三項測試,其中甲、乙兩名應聘者的成績如右表:(單位:分)

教學能力

科研能力

組織能力

81

85

86

92

80

74

(1)若根據三項測試的平均成績在甲、乙兩人中錄用一人,那么誰將被錄用?

(2)根據實際需要,學校將教學、科研和組織能力三項測試得分按 5:3:2 的比確定每人的最后成績,若按此成績在甲、乙兩人中錄用一人,誰將被錄用?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A、B、C、D在⊙O上,DE⊥OA,DF⊥OB,垂足分別為E,F,若∠EDF=50°,則∠C的度數為(
A.40°
B.50°
C.65°
D.130°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P(4,a)在正比例函數y= x的圖象上,則點Q(2a﹣5,a)關于y軸的對稱點Q'坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一輪船在P處測得燈塔A在正北方向,燈塔B在南偏東30°方向,輪船向正東航行了900m,到達Q處,測得A位于北偏西60°方向,B位于南偏西30°方向.

(1)線段BQPQ是否相等?請說明理由;
(2)求A、B間的距離(結果保留根號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.

(1)B出發(fā)時與A相距   千米.

(2)B走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是   小時.

(3)B出發(fā)后   小時與A相遇.

(4)求出A行走的路程S與時間t的函數關系式.

(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,   小時與A相遇,相遇點離B的出發(fā)點   千米.在圖中表示出這個相遇點C.

查看答案和解析>>

同步練習冊答案