【題目】小明、小亮和小強三人準備下象棋,他們約定用拋硬幣的游戲方式來確定哪個人先下棋,規(guī)則如下:三人手中各持有一枚質(zhì)地均勻的硬幣,他們同時將手中硬幣拋落到水平地面為一個回合,落地后,三枚硬幣中,恰有兩枚正面向上或者反面向上的兩人先下棋;若三枚硬幣均為正面向上或反面向上,則不能確定其中兩人先下棋.

1)請你完成下面表示游戲一個回合所有可能出現(xiàn)的結(jié)果的樹狀圖;

2)求出一個回合能確定兩人下棋的概率.

解:(1)樹狀圖為:

【答案】1)見解析;(2

【解析】

1)此題需兩步完成,可根據(jù)題意畫樹狀圖求得所有可能出現(xiàn)的結(jié)果;

2)根據(jù)樹狀圖求得一個回合能確定兩人先下棋的情況,再根據(jù)概率公式求解即可.

1)畫樹狀圖得:

2)∴一共有8種等可能的結(jié)果,

一個回合能確定兩人先下棋的有6種情況,

∴一個回合能確定兩人先下棋的概率為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,為坐標原點,正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過點.點軸上,且,反比例函數(shù)圖象上有一點,且,則點坐標為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達式;

2)設商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?

3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,點PBC上任意一點(可與點BC重合),分別過B、CD作射線AP的垂線,垂足分別是B′、C′、D′,則BB′+CC′+DD′的最小值是( 。

A. 1 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC10cmBDAC于點D,BD8cm.點M從點A出發(fā),沿AC的方向勻速運動,同時直線PQ由點B出發(fā),沿BA的方向勻速運動,運動過程中始終保持PQAC,直線PQAB于點P、交BC于點Q、交BD于點F.連接PM,設運動時間為t秒(0t5).線段CM的長度記作y,線段BP的長度記作y,yy關(guān)于時間t的函數(shù)變化情況如圖所示.

1)由圖2可知,點M的運動速度是每秒  cm;當t  秒時,四邊形PQCM是平行四邊形?在圖2中反映這一情況的點是  (并寫出此點的坐標);

2)設四邊形PQCM的面積為ycm2,求yt之間的函數(shù)關(guān)系式;

3)連接PC,是否存在某一時刻t,使點M在線段PC的垂直平分線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系,直線y軸交于點A,與雙曲線交于點

1)求點B的坐標及k的值;

2)將直線AB平移,使它與x軸交于點C,與y軸交于點D,若的面積為6,求直線CD的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知點M0的坐標為(1,0),將線段OM0繞原點O逆時針方向旋轉(zhuǎn)45°,再將其延長到M1,使得M1M0⊥OM0,得到線段OM1;又將線段OM1繞原點O逆時針方向旋轉(zhuǎn)45°,再將其延長到M2,使得M2M1⊥OM1,得到線段OM2;如此下去,得到線段OM3,OM4,OM5,根據(jù)以上規(guī)律,請直接寫出OM2014的長度為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,,點在線段上,由點向點運動,當點與點重合時,停止運動.以點為圓心,為半徑作,交于點,點上且在矩形外,

1)當時,__________,扇形的面積=__________,點的最短距離=__________

2相切時,求的長?

3)如圖交于點、,當時,求的長?

4)請從下面兩問中,任選一道進行作答.

①當有兩個公共點時,直接寫出的取值范圍.

②直接寫出點的運動路徑長以及的最短距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于二次函數(shù)y=2x2﹣mx+m﹣2,以下結(jié)論:

拋物線交x軸有交點;

不論m取何值,拋物線總經(jīng)過點(1,0);

若m6,拋物線交x軸于A、B兩點,則AB>1;

拋物線的頂點在y=﹣2(x﹣1)2圖象上.其中正確的序號是(  )

A. ①②③④ B. ①②③ C. ①②④ D. ②③④

查看答案和解析>>

同步練習冊答案