【題目】如圖,ABC內(nèi)接于⊙O,ACBC,CD是⊙O的直徑,與AB相交于點(diǎn)G,過點(diǎn)DEFAB,分別交CA、CB的延長(zhǎng)線于點(diǎn)E、F,連接BD.

1)求證:EF是⊙O的切線;

2)求證:BD2ACBF.

【答案】1)見解析;(2)見解析.

【解析】

1)根據(jù)圓的對(duì)稱性可得∠ACD=∠BCD,根據(jù)等腰三角形的性質(zhì)可得CDAB,由EF//AB可得∠CDF=∠CGB90°,即可得答案;(2)先證明△BCD∽△BDF,利用相似三角形的性質(zhì)可知:,利用BCAC即可求證BD2ACBF.

1)∵ACBC,CD是圓的直徑,

∴由圓的對(duì)稱性可知:∠ACD=∠BCD,

CDAB,

ABEF,

∴∠CDF=∠CGB90°,

OD是圓的半徑,

EF是⊙O的切線;

2)∵∠BDF+CDB=∠CDB+C90°,

∴∠BDF=∠CDB,

∴△BCD∽△BDF

,

BD2BCBD,

BCAC,

BD2ACBF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在“我運(yùn)動(dòng),我快樂”的技能比賽培訓(xùn)活動(dòng)中,在相同條件下,對(duì)甲、乙兩名同學(xué)的“單手運(yùn)球”項(xiàng)目進(jìn)行了5次測(cè)試,測(cè)試成績(jī)(單位:分)如下:根據(jù)右圖判斷正確的是(

A.甲成績(jī)的平均分低于乙成績(jī)的平均分;

B.甲成績(jī)的中位數(shù)高于乙成績(jī)的中位數(shù);

C.甲成績(jī)的眾數(shù)高于乙成績(jī)的眾數(shù);

D.甲成績(jī)的方差低于乙成績(jī)的方差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)的函數(shù)圖象經(jīng)過兩點(diǎn),過兩點(diǎn)作一直線.

1)求反比例函數(shù)解析式;

2)將反比例函數(shù)向下平移1個(gè)單位,得函數(shù)________;函數(shù)與坐標(biāo)軸的交點(diǎn)為__________;

3)將直線向下平移個(gè)單位后與函數(shù)的圖象有唯一交點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長(zhǎng)CBx軸于點(diǎn)A1,作第1個(gè)正方形A1B1C1C;延長(zhǎng)C1B1x軸于點(diǎn)A2,作第2個(gè)正方形A2B2C2C1,,按這樣的規(guī)律進(jìn)行下去,第2020個(gè)正方形的面積是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+c的圖象如圖所示,下列結(jié)論:①ac0,②b2a0③b24ac0,④ab+c0,正確的是( )

A.①②B.①④C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,,,,點(diǎn)EAB的中點(diǎn),DBC邊上的一動(dòng)點(diǎn),把△ACD沿AD折疊,點(diǎn)C落在點(diǎn)F處,當(dāng)△AEF為直角三角形時(shí),CD的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點(diǎn)A(4,0)、B(1,0),交y軸于點(diǎn)C

1)求拋物線的解析式.

2)點(diǎn)P是直線AC上方的拋物線上一點(diǎn),過點(diǎn)P于點(diǎn)H,求線段PH長(zhǎng)度的最大值.

3Q為拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、BC重合),軸于點(diǎn)M,是否存在點(diǎn)Q,使得以點(diǎn)A、QM三點(diǎn)為頂點(diǎn)的三角形與△AOC相似?若存在,直接寫出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,AD=8,P,E分別是線段AC、BC上的點(diǎn),且四邊形PEFD為矩形.

(1)若△PCD是等腰三角形時(shí),求AP的長(zhǎng);

(2)若AP=,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(6,0),點(diǎn)By軸正半軸上一動(dòng)點(diǎn),連接AB,以AB為一邊向下作等邊ABC,連接OC,則OC的最小值(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案