【題目】如圖,在正方形紙片ABCD中,對角線AC、BD交于點O,折疊正方形紙片 ABCD,使AD落在BD上,點A恰好與BD上的點F重合.展開后,折痕DE分別交AB、 AC于點EG.連接GF.則下列結(jié)論錯誤的是( )

A. AGD=112.5° B. 四邊形AEFG是菱形 C. tan∠AED=2 D. BE=2OG

【答案】C

【解析】: AC、BD是正方形ABCD的對角線

∴∠ABD=GAD=ADB=BAC=45°,

由對折的性質(zhì)得DE平分∠ADB,

ADG=22.5°

GAD+ADG+AGD=180°,ADG=22.5°,GAD=45°,

AGD=112.5°,

A正確;

由題意知,四邊形AEFG是平行四邊形,

由對折的性質(zhì)得AE=EF,

四邊形AEFG是菱形,

B正確;

GF=EF=AE ,

ABD=45°EFBD,

BE=EF

EF=AE,

BE=AE

GFO=45°, ACBD,

GF=OG ,

BE=GF,GF=OG,

BE=2OG,

D正確;

BE=AE,

AD=BE+AE=AE+AE=(1+)AE,

tanAED=== .

C錯誤.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】法國數(shù)學(xué)家柯西于1813年在拉格朗日、高斯的基礎(chǔ)上徹底證明了《費馬多邊形數(shù)定理》,其主要突破在五邊形數(shù)的證明上.如圖為前幾個五邊形數(shù)的對應(yīng)圖形,請據(jù)此推斷,第10五邊形數(shù)應(yīng)該為( 。2018五邊形數(shù)的奇偶性為( 。

A. 145;偶數(shù) B. 145;奇數(shù) C. 176;偶數(shù) D. 176;奇數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 ABC中,AB=AC, BAC=90°,直角∠ EPF的頂點PBC中點,兩邊PE、PF分別交ABAC于點E、F,給出以下四個結(jié)論:①AE=CF;②△ EPF是等腰直角三角形; 2S四邊形AEPF=S ABC; BE+CF=EF.當(dāng)∠ EPF ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點EAB重合).上述結(jié)論中始終正確的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明學(xué)習(xí)電學(xué)知識后,用四個開關(guān)按鍵(每個開關(guān)按鍵閉合的可能性相等)、一個電源和一個燈泡設(shè)計了一個電路圖

(1)若小明設(shè)計的電路圖如圖1(四個開關(guān)按鍵都處于打開狀態(tài))如圖所示,求任意閉合一個開關(guān)按鍵,燈泡能發(fā)光的概率;

(2)若小明設(shè)計的電路圖如圖2(四個開關(guān)按鍵都處于打開狀態(tài))如圖所示,求同時時閉合其中的兩個開關(guān)按鍵,燈泡能發(fā)光的概率.(用列表或樹狀圖法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點為坐標(biāo)原點,點軸的負(fù)半軸上,點軸的正半軸上,以為斜邊向上作等腰直角,軸于點.

1)如圖1,求點的坐標(biāo);

2)如圖2,動點從點出發(fā)以每秒1個單位長度的速度沿軸的正半軸運動,設(shè)運動時間為秒,連接,設(shè)的面積為,請用含的式子來表示;

3)如圖3,在(2)的條件下,當(dāng)點的延長線上時,點在直線的下方,且.連接,取的中點,連接并延長交于點,連接,當(dāng)時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場準(zhǔn)備進(jìn)一批兩種不同型號的衣服,已知購進(jìn)A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進(jìn)A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.

(1)求A、B型號衣服進(jìn)價各是多少元?

(2)若已知購進(jìn)A型號衣服是B型號衣服的2倍還多4件,則商店在這次進(jìn)貨中可有幾種方案并簡述購貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,E是等邊三角形ABC的邊AB所在直線上一點,D是邊BC所在直線上一點,且DC不重合,若EC=ED.則稱D為點C關(guān)于等邊三角形ABC的反稱點,點E稱為反稱中心.
在平面直角坐標(biāo)系xOy中,
1)已知等邊三角形AOC的頂點C的坐標(biāo)為(20),點A在第一象限內(nèi),反稱中心E在直線AO上,反稱點D在直線OC上.
①如圖2,若E為邊AO的中點,在圖中作出點C關(guān)于等邊三角形AOC的反稱點D,并直接寫出點D的坐標(biāo):___.
②若AE=2,求點C關(guān)于等邊三角形AOC的反稱點D的坐標(biāo);
2)若等邊三角形ABC的頂點為Bn,0),Cn+10),反稱中心E在直線AB上,反稱點D在直線BC上,且2≤AE3.請直接寫出點C關(guān)于等邊三角形ABC的反稱點D的橫坐標(biāo)t的取值范圍:P_____(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點A,0),B0),且與y軸相交于點C

1求這條拋物線的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DEAC,當(dāng)DCEAOC相似時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點,E,F(xiàn)分別是線段BM,CM的中點.

(1)求證:△ABM≌△DCM;

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

(3)當(dāng)四邊形MENF是正方形時,求AD:AB的值.

查看答案和解析>>

同步練習(xí)冊答案