【題目】如圖,四邊形中,點到直線,的距離相等為, ,平分,長為n,且,四邊形的面積為6.
(1)求線段的長;
(2)為延長線上一點,,交延長線于,探究、、的數(shù)量關(guān)系并說明理由;
(3)作平行交延長線于,平分,反向延長線交延長線于,若設(shè),,試求的值.
【答案】(1)1;(2),理由見解析;(3)
【解析】
分別以、所在的直線為x、軸建立平面直角坐標(biāo)系.
(1)利用二次根式的性質(zhì)求出、n的值,求出、兩點坐標(biāo),由,推出,求出即可;
(2)如圖2中,結(jié)論:.根據(jù)三角形內(nèi)角和定理,三角形的外角的性質(zhì)即可解決問題;
(3)由,推出,由平分,推出,由,推出,由平分,可得,由此即可解決問題.
解:分別以、所在的直線為x、軸建立平面直角坐標(biāo)系.
(1)由題意,
解得,
,
,.
如圖1中,
,
,
.
(2)如圖2中,結(jié)論:.理由如下:
,
,
,,
,
.
(3)如圖3中,
,
,
平分,
,
,
,
,
平分,
,
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小賢為了體驗四邊形的不穩(wěn)定性,將四根木條用釘子釘成一個矩形框架ABCD,B與D兩點之間用一根橡皮筋拉直固定,然后向右扭動框架,觀察所得四邊形的變化,下列判斷錯誤的是( )
A. 四邊形ABCD由矩形變?yōu)槠叫兴倪呅?/span> B. BD的長度增大
C. 四邊形ABCD的面積不變 D. 四邊形ABCD的周長不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為6cm,點E,M分別是線段BD,AD上的動點,連接AE并延長,交邊BC于F,過M作MN⊥AF,垂足為H,交邊AB于點N.
(1)如圖①,若點M與點D重合,求證:AF=MN;
(2)如圖②,若點M從點D出發(fā),以1cm/s的速度沿DA向點A運動,同時點E從點B出發(fā),以cm/s的速度沿BD向點D運動,運動時間為ts.
①設(shè)BF=ycm,求y關(guān)于t的函數(shù)表達(dá)式;
②當(dāng)BN=2AN時,連接FN,求FN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是⊙O外一動點,PA、PB、CD是⊙O的三條切線,C、D分別在PA、PB上,連接OC、OD.設(shè)∠P為x°,∠COD為y°,則y隨x的函數(shù)關(guān)系圖象為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個房間供游客居住,當(dāng)每個房間定價120元時,房間會全部住滿,當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑。如果游客居住房間,賓館需對每個房間每天支出20元的各種費用,設(shè)每個房間定價增加10 x元(x為整數(shù))。
(1)(2分)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式。
(2)(4分)設(shè)賓館每天的利潤為W元,當(dāng)每間房價定價為多少元時,賓館每天所獲利潤最大,最大利潤是多少?
(3)(4分)某日,賓館了解當(dāng)天的住宿的情況,得到以下信息:①當(dāng)日所獲利潤不低于5000元,②賓館為游客居住的房間共支出費用沒有超過600元,③每個房間剛好住滿2人。問:這天賓館入住的游客人數(shù)最少有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇準(zhǔn)備完成題目:化簡:,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說:“你猜錯了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).”通過計算說明原題中“”是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)著說點理:補全證明過程:
如圖, 于點,若 ,求 的度數(shù)。
解:過點作 。
,
(________________)①
________。②(兩直線平行,內(nèi)錯角相等)
,
。(________________)③
________________。④(等量代換)
,
。(________________)⑤
,
。
則________________ 。⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,以CE、BC為邊作平行四邊形CEFB,連CD、CF.
(1)如圖2,△ADE繞點A旋轉(zhuǎn)一定角度,求證:CD=CF;
(2)如圖3,AE=,AB=,將△ADE繞A點旋轉(zhuǎn)一周,當(dāng)四邊形CEFB為菱形時,求CF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com