【題目】如圖,矩形ABCD中,AB=4cm,BC=8cm,動(dòng)點(diǎn)M從點(diǎn)D出發(fā),按折線D﹣C﹣B﹣A﹣D方向以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)N從點(diǎn)D出發(fā),按折線D﹣A﹣B﹣C﹣D方向以1cm/s的速度運(yùn)動(dòng).若動(dòng)點(diǎn)M、N同時(shí)出發(fā),相遇時(shí)停止運(yùn)動(dòng),若點(diǎn)E在線段BC上,且BE=3cm,經(jīng)過_____秒鐘,點(diǎn)A、E、M、N組成平行四邊形.
【答案】
【解析】
根據(jù)t的值討論M、N的位置,根據(jù)平行四邊形的判定定理即可求解.
如圖,
在直角△ABE中,AE==5cm.
設(shè)運(yùn)動(dòng)的時(shí)間是t秒.
當(dāng)0<t<2時(shí),M在CD上,N在DA上,
若平行四邊形是AEMN,
則AE∥MN且AE=MN,而AE=MN不可能成立;
當(dāng)t=2時(shí),M在C點(diǎn),DN=4cm,
此時(shí),AN≠EC,
則不能構(gòu)成平行四邊形;
當(dāng)2<t<4.5時(shí),M在BC上,
則EM=BC+CD-BE-2t=9-2t,AN=8-t,
當(dāng)9-2t=8-t時(shí),
解得:t=1(舍去),
當(dāng)4.5<t<6時(shí),M在BC上,
則EM=2t-(BC+CD-BE)=2t-9,AN=8-t,
當(dāng)2t-9=8-t時(shí),
解得:t=,
此時(shí)四邊形AMEN是平行四邊形;
當(dāng)6<t<8時(shí),M在AB上,N在AD上,
不能構(gòu)成平行四邊形;
當(dāng)t=8時(shí),Q與A重合,不能構(gòu)成平行四邊形形.
綜上所述:經(jīng)過秒鐘,點(diǎn)A、E、M、N組成平行四邊形.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年1月有300名教師參加了“新技術(shù)支持未來教育”培訓(xùn)活動(dòng),會(huì)議就“面向未來的教育”和“家庭教育”這兩個(gè)問題隨機(jī)調(diào)查了60位教師,并對(duì)數(shù)據(jù)進(jìn)行了整理、描述和分析.下面給出了部分信息:
a.關(guān)于“家庭教育”問題發(fā)言次數(shù)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24):
b.關(guān)于“家庭教育”問題發(fā)言次數(shù)在8≤x<12這一組的是:
8899910101010101011111111
c.“面向未來的教育”和“家庭教育”這兩問題發(fā)言次數(shù)的平均數(shù)、眾數(shù)、中位數(shù)如下:
問題 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
面向未來的學(xué)校教育 | 11 | 10 | 9 |
家庭教育 | 12 | m | 10 |
根據(jù)以上信息,回答下列問題:
(1)表中m的值為______;
(2)在此次采訪中,參會(huì)教師更感興趣的問題是______(填“面向未來的教育”或“家庭教育”),理由是______;
(3)假設(shè)所有參會(huì)教師都接受調(diào)查,估計(jì)在“家庭教育”這個(gè)問題上發(fā)言次數(shù)超過8次的參會(huì)教師有______位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】車間有20名工人,某天他們生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)如下表.
車間20名工人某一天生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)表
生產(chǎn)零件的個(gè)數(shù)(個(gè)) | 9 | 10 | 11 | 12 | 13 | 15 | 16 | 19 | 20 |
工人人數(shù)(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求這一天20名工人生產(chǎn)零件的平均個(gè)數(shù);
(2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎(jiǎng)”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個(gè)“定額”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠BAC=120°,AB=AC=2 .D為BC邊一點(diǎn),且BD:DC=1:2.以D為一個(gè)點(diǎn)作等邊△DEF,且DE=DC連接AE,將等邊△DEF繞點(diǎn)D旋轉(zhuǎn)一周,在整個(gè)旋轉(zhuǎn)過程中,當(dāng)AE取得最大值時(shí)AF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2﹣3ax+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C直線y=﹣x+4經(jīng)過點(diǎn)B、C.
(1)求拋物線的表達(dá)式;
(2)過點(diǎn)A的直線交拋物線于點(diǎn)M,交直線BC于點(diǎn)N.
①點(diǎn)N位于x軸上方時(shí),是否存在這樣的點(diǎn)M,使得AM:NM=5:3?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
②連接AC,當(dāng)直線AM與直線BC的夾角∠ANB等于∠ACB的2倍時(shí),請(qǐng)求出點(diǎn)M的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點(diǎn)O,點(diǎn)D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點(diǎn)P,給出以下結(jié)論:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,P(m,n)在拋物線y=ax2-4ax(a>0)上,E為拋物線的頂點(diǎn).
(1)求點(diǎn)E的坐標(biāo)(用含a的式子表示);
(2)若點(diǎn)P在第一象限,線段OP交拋物線的對(duì)稱軸于點(diǎn)C,過拋物線的頂點(diǎn)E作x軸的平行線DE,過點(diǎn)P作x軸的垂線交DE于點(diǎn)D,連接CD,求證:CD∥OE;
(3)如圖2,當(dāng)a=1,且將圖1中的拋物線向上平移3個(gè)單位,與x軸交于A、B兩點(diǎn),平移后的拋物線的頂點(diǎn)為Q,P是其x軸上方的對(duì)稱軸上的動(dòng)點(diǎn),直線AP交拋物線于另一點(diǎn)D,分別過Q、D作x軸、y軸的平行線交于點(diǎn)E,且∠EPQ=2∠APQ,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在10×10的網(wǎng)格中,有一格點(diǎn)△ABC(說明:頂點(diǎn)都在網(wǎng)格線交點(diǎn)處的三角形叫做格點(diǎn)三角形).
(1)將△ABC先向右平移5個(gè)單位,再向上平移2個(gè)單位,得到△A'B'C',請(qǐng)直接畫出平移后的△A'B'C';
(2)將△A'B'C'繞點(diǎn)C'順時(shí)針旋轉(zhuǎn)90°,得到△A'B'C',請(qǐng)直接畫出旋轉(zhuǎn)后的△A'B'C';
(3)在(2)的旋轉(zhuǎn)過程中,求點(diǎn)A'所經(jīng)過的路線長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是ABC的外接圓,AB為直徑,∠BAC的平分線交于點(diǎn)D,過點(diǎn)D作DEAC分別交AC、AB的延長線于點(diǎn)E、F.
(1)求證:EF是的切線;
(2)若AC=4,CE=2,求的長度.(結(jié)果保留)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com