【題目】如圖,在Rt△ABC中,∠B=90°,AC=120cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒.過點D作DF⊥BC于點F,連接DE,EF.當(dāng)四邊形AEFD是菱形時,t的值為( )
A. 20秒 B. 18秒 C. 12 秒 D. 6秒
【答案】A
【解析】∵直角△ABC中,∠C=90°∠A=30°.
∵CD=4t,AE=2t,
又∵在直角△CDF中,∠C=30°,
∴DF=12CD=2t,
∵DF⊥BC
∴∠CFD=90°
∵∠B=90°
∴∠B=∠CFD
∴DF∥AB,
由(1)得:DF=AE=2t,
∴四邊形AEFD是平行四邊形,
當(dāng)AD=AE時,四邊形AEFD是菱形,
即1204t=2t,
解得:t=20,
即當(dāng)t=20時,AEFD是菱形;
故選A.
點睛:用菱形的性質(zhì)進(jìn)行計算或證明時,一般是根據(jù)菱形的性質(zhì),將有關(guān)的邊、角的求解問題,轉(zhuǎn)化到邊上,再利用相等等條件求解,從而解決問題.本題中易證四邊形AEFD是平行四邊形,當(dāng)AD=AE時,四邊形AEFD是菱形,據(jù)此即可列方程求得t的值;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結(jié)論:
①4ac-b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠-1),
其中正確結(jié)論的個數(shù)是( )
A.4個 B.3個 C.2個 D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,從左起第1個等邊三角形的邊長記為a1,第2個等邊三角形的邊長記為a2,以此類推.若OA1=1,則a2017= ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(-2,-1)、B(-1,1)、C(0,-2).
(1)點B關(guān)于坐標(biāo)原點O對稱的點的坐標(biāo)為 ( );
(2)將△ABC繞點C順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A1B1C;
(3)求過點B、B1的一次函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com